Skip to main content
Log in

Fabrication and Characterization of Silica Based Ceramic Composite for Filtration Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A new ceramic composite was fabricated from biowastes with the potential of finding the application in water treatment. A composite with silica being the base material, activated carbon and eggshell nanoparticles as the filler material was fabricated using the gel casting technique. The fabricated composite was characterized with the aid of Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX analysis), and X-ray diffraction (XRD) analysis. The adsorption capacity of the composite was investigated with UV–vis spectroscopy. Morphology analysis revealed the presence of porosity in the composite sample. Presence of activated carbon, silica and eggshells particles was confirmed through XRD and EDX analysis. The adsorption isotherms were well fitted with Langmuir isotherms. The maximum adsorption capacity was found to be 635.46 mg/g for methylene blue adsorption on the surface of the composite sample. By the filtration through the composite, the reduction in Total Dissolved Solid (TDS) concentration from 1100 ppm to 284 ppm was observed, also filtration made water from slightly acidic to alkaline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157:277–296. https://doi.org/10.1016/J.CEJ.2010.01.007

    Article  CAS  Google Scholar 

  2. United Nations Children’s Fund (UNICEF) WHO (WHO) Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines | UNICEF Publications | UNICEF. https://www.unicef.org/publications/index_96611.html. Accessed 21 Sep 2019

  3. Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28. https://doi.org/10.1016/J.SUSMAT.2016.02.001

    Article  CAS  Google Scholar 

  4. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science (New York, NY) 313:1068–1072. https://doi.org/10.1126/science.1128845

    Article  CAS  Google Scholar 

  5. Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    Article  CAS  Google Scholar 

  6. Jahanshahi M, Rahimpour A, Peyravi M (2010) Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol) nanofiltration membranes. Desalination 257:129–136. https://doi.org/10.1016/j.desal.2010.02.034

    Article  CAS  Google Scholar 

  7. Xu C, Cui A, Xu Y, Fu X (2013) Graphene oxide-TiO2 composite filtration membranes and their potential application for water purification. Carbon 62:465–471. https://doi.org/10.1016/j.carbon.2013.06.035

    Article  CAS  Google Scholar 

  8. Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360:463–470. https://doi.org/10.1016/j.jcis.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  9. Taha AA, Wu YN, Wang H, Li F (2012) Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. J Environ Manage 112:10–16. https://doi.org/10.1016/j.jenvman.2012.05.031

    Article  CAS  PubMed  Google Scholar 

  10. Li B, Cao H (2011) ZnO/graphene composite with enhanced performance for the removal of dye from water. J Mater Chem 21:3346–3349. https://doi.org/10.1039/c0jm03253k

    Article  CAS  Google Scholar 

  11. Upadhyay RK, Soin N, Roy SS (2014) Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv 4:3823–3851

    Article  CAS  Google Scholar 

  12. Tesh SJ, Scott TB (2014) Nano-composites for water remediation: a review. Adv Mater 26:6056–6068

    Article  CAS  Google Scholar 

  13. Alizadeh Arasi M, Salem A, Salem S (2020) Extraction of nano-porous silica from hydrosodalite produced via modification of low-grade kaolin for removal of methylene blue from wastewater. J Chem Technol Biotechnol 95:1989–2000. https://doi.org/10.1002/jctb.6387

    Article  CAS  Google Scholar 

  14. Farias, R da C, Moeta M, … LS-J of M, 2020 Undefined green synthesis of porous N-carbon/silica nanofibers by solution blow spinning and evaluation of their efficiency in dye adsorption. Elsevier

  15. Ye J, Nyobe D, Tang B, Bin L, Li P, Huang S, Fu F, Cai Y, Guan G, Hao X (2020) Facilely synthesized recyclable mesoporous magnetic silica composite for highly efficient and fast adsorption of methylene blue from wastewater: thermodynamic mechanism and kinetics study. J Mol Liq 303:112656. https://doi.org/10.1016/j.molliq.2020.112656

    Article  CAS  Google Scholar 

  16. Panchal M, Raghavendra G, Ojha S, Omprakash M, Acharya SK (2019) A single step process to synthesize ordered porous carbon from coconut shells-eggshells biowaste. Mater Res Express 6:115613. https://doi.org/10.1088/2053-1591/ab4cb3

  17. Punugupati G, Bose PSC, Raghavendra G, Rao CSP (2019) Response surface modeling and optimization of Gelcast fused silica micro hybrid ceramic composites. Silicon. 12:1513–1528. https://doi.org/10.1007/s12633-019-00247-w

    Article  CAS  Google Scholar 

  18. Ahmed MJ, Dhedan SK (2012) Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib 317:9–14. https://doi.org/10.1016/j.fluid.2011.12.026

    Article  CAS  Google Scholar 

  19. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B 39:933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  CAS  Google Scholar 

  20. Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H (2010) The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials 31:5498–5509. https://doi.org/10.1016/j.biomaterials.2010.03.058

    Article  CAS  PubMed  Google Scholar 

  21. Sharma YC, Uma (2010) Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon. J Chem Eng Data 55:435–439. https://doi.org/10.1021/je900408s

    Article  CAS  Google Scholar 

  22. Emmerich FG, De Sousa JC, Torriani IL, Luengo CA (2013) Applications of a granular model and percolation theory to the electrical resistivity of heat treated endocarp of babassu nut (CARBON (1987) 25:3 (417-424)). Carbon 51:439

    Article  CAS  Google Scholar 

  23. Wei T, Zhang Q, Wei X, et al (2016) A facile and low-cost route to heteroatom doped porous carbon derived from Broussonetia Papyrifera bark with excellent Supercapacitance and CO 2 capture performance. Scientific reports 6: https://doi.org/10.1038/srep22646

  24. Panchal M, Raghavendra G, Prakash MO, Ojha S, Chandra Bose PS (2018) Moisture absorption behavior of treated and untreated eggshell particulate epoxy composites. Silicon 10:859–867. https://doi.org/10.1007/s12633-016-9541-6

    Article  CAS  Google Scholar 

  25. Tahiri N, Khouchaf L, Elaatmani M, et al (2014) Study of the thermal treatment of SiO2 aggregate. In: IOP conference series: materials science and engineering. Institute of Physics publishing

  26. Naemchanthara K, Meejoo S, Onreabroy W, Limsuwan P (2008) Temperature effect on chicken egg Shell investigated by XRD, TGA and FTIR. Adv Mat Res 55–57:333–336. https://doi.org/10.4028/www.scientific.net/AMR.55-57.333

    Article  Google Scholar 

  27. Chang JS, Vigneswaran S, Kandasamy JK, Tsai LJ (2008) effect of pore size and particle size distribution on granular bed filtration and microfiltration. In: Separation Science and Technology. Taylor & Francis Group , pp 1771–1784

  28. Ziel R, Haus A, Tulke A (2008) Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis. J Membr Sci 323:241–246. https://doi.org/10.1016/j.memsci.2008.05.057

    Article  CAS  Google Scholar 

  29. Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Hashim R (2009) Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. J Hazard Mater 170:357–365. https://doi.org/10.1016/j.jhazmat.2009.04.087

    Article  CAS  PubMed  Google Scholar 

  30. Banerjee S, Chemistry MC-AJ of, 2017 Undefined adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Elsevier

  31. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  32. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  33. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5:212–223. https://doi.org/10.1021/i160018a011

    Article  CAS  Google Scholar 

  34. Aljeboree AM, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10:S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020

    Article  CAS  Google Scholar 

  35. Islam MA, Ahmed MJ, Khanday WA, Asif M, Hameed BH (2017) Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J Environ Manage 203:237–244. https://doi.org/10.1016/j.jenvman.2017.07.029

    Article  CAS  PubMed  Google Scholar 

  36. Seidmohammadi A, Asgari G, … AD-P in C, 2019 (2019) A Comparative Study for the Removal of Methylene Blue Dye from Aqueous Solution by Novel Activated Carbon Based Adsorbents. progress in color, colorants and coatings 12:133–144

  37. Liu S, Wei J, Chen X, Ai W, Wei C (2020) Low-cost route for preparing carbon-silica composite Mesoporous material from coal gasification slag: synthesis, characterization and application in purifying dye wastewater. Arab J Sci Eng 45:4647–4657. https://doi.org/10.1007/s13369-020-04383-z

    Article  CAS  Google Scholar 

  38. Duan X, Hong W, … CS-MR, 2018 U (2019) Hydrochar silicate composite sorbent via simple hydrothermal carbonization and its application to methylene blue removal. iopscience.iop.org 6:035601. https://doi.org/10.1088/2053-1591/aaf44f

  39. Pan J, Ren J, Xie Y, Wei X, Guan Y, Yan X, Tang H, Cheng X (2017) Porous SiOC composites fabricated from preceramic polymers and wood powders for efficient dye adsorption and removal. Res Chem Intermed 43:3813–3832. https://doi.org/10.1007/s11164-016-2850-y

    Article  CAS  Google Scholar 

  40. Liang Z, Zhao Z, Sun T, Shi W, Cui F (2017) Enhanced adsorption of the cationic dyes in the spherical CuO/meso-silica nano composite and impact of solution chemistry. J Colloid Interface Sci 485:192–200. https://doi.org/10.1016/j.jcis.2016.09.028

    Article  CAS  PubMed  Google Scholar 

  41. Liou TH, Lin MH (2020) Characterization of graphene oxide supported porous silica for effectively enhancing adsorption of dyes. Sep Sci Technol 55:431–443. https://doi.org/10.1080/01496395.2019.1577274

  42. Zhang D, Ma Y, Feng H, Wang Y, Hao Y (2012) Preparation and characterization of the carbon-microsilica composite sorbent. Adv Powder Technol 23:215–219. https://doi.org/10.1016/j.apt.2011.02.010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Raghavendra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchal, M., Raghavendra, G., Omprakash, M. et al. Fabrication and Characterization of Silica Based Ceramic Composite for Filtration Applications. Silicon 13, 1951–1960 (2021). https://doi.org/10.1007/s12633-020-00595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00595-y

Keywords

Navigation