Skip to main content
Log in

Effect of Hot Zone Design on Polycrystalline Silicon Ingot Growth Process by Seeded Directional Solidification

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper uses the finite element method for numerical simulation and builds a transient global model to simulate polycrystalline silicon ingot growing process in CGsim software. The transient global model is verified through experiments. In addition, the influence of the width and height of the bottom of the side insulation on the temperature field, power consumption and melt-crystal interface (m/c interface) of the solidification process are analyzed. And a new hot zone design method is proposed to protect seed crystal silicon. The results show that the residual height of the seed crystal is increased by 4.5 mm through this design. And increasing the width and height of the side insulation bottom can effectively reduce the power consumption by 5 kW and improve the crystal growth interface, which helps to improve the crystal quality and reduce the cost. This study will provide some references for the optimization of polycrystalline silicon ingot growing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou JC, Ke HY, Deng X (2018) Experimental and CFD investigation on temperature distribution of a serpentine tube type photovoltaic/thermal collector[J]. Sol Energy 174:735–742. https://doi.org/10.1016/j.solener.2018.09.063

    Article  Google Scholar 

  2. Zhou JC, Zhang Z, Ke HY (2018) PV module temperature distribution with a novel segmented solar cell absorbance model[J]. Renew Energy:1071–1080. https://doi.org/10.1016/j.renene.2018.09.014

  3. Gu X, Yu XG, Guo KX et al (2012) Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: Towards high efficiency and low cost silicon solar cells[J]. Solar Energy Materials & Solar Cells 101(2):95–101. https://doi.org/10.1016/j.solmat.2012.02.024

    Article  CAS  Google Scholar 

  4. Nguyen THT, Liao SH, Chen JC et al (2016) Effects of the hot zone design during the growth of large size multi-crystalline silicon ingots by the seeded directional solidification process[J]. J Cryst Growth 452:27–34. https://doi.org/10.1016/j.jcrysgro.2015.12.045

    Article  CAS  Google Scholar 

  5. Yang YM, Yu A, Hsu B et al (2015) Development of high-performance multicrystalline silicon for photovoltaic industry[J]. Prog Photovolt Res Appl 23(3):340–351. https://doi.org/10.1002/pip.2437

    Article  CAS  Google Scholar 

  6. Ding C, Huang M, Zhong G et al (2014) A Design of Crucible Susceptor for the seeds preservation during a seeded directional solidification process[J]. J Cryst Growth 387:73–80. https://doi.org/10.1016/j.jcrysgro.2013.08.039

    Article  CAS  Google Scholar 

  7. Q.H. Yu, L.J. Li, W.C Ma, et al. Local design of the hot-zone in an industrial seeded directional solidification furnace for quasi-single crystalline silicon ingots[J]. J Cryst Growth, 2012, 358: 5–11. https://doi.org/10.1016/j.jcrysgro.2012.07.039

  8. Ma WC, Zhong GX, Sun L et al (2012) Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells[J]. Sol Energy Mater Sol Cells 100:231–238. https://doi.org/10.1016/j.solmat.2012.01.024

    Article  CAS  Google Scholar 

  9. Wu ZY, Zhong GX, Zhang ZY et al (2015) Optimization of the high-performance multi-crystalline silicon solidification process by insulation partition design using transient global simulations[J]. J Cryst Growth 426:110–116. https://doi.org/10.1016/j.jcrysgro.2015.05.021

    Article  CAS  Google Scholar 

  10. Qi XF, Zhao WH, Li LJ et al (2014) Optimization via simulation of a seeded directional solidification process for quasi-single crystalline silicon ingots by insulation partition design[J]. J Cryst Growth 398(18):5–12. https://doi.org/10.1016/j.jcrysgro.2014.04.011

    Article  CAS  Google Scholar 

  11. Liu LJ, Yu QH, Qi XF et al (2015) Controlling solidification front shape and thermal stress in growing quasi-single-crystal silicon ingots: process Design for Seeded Directional Solidification[J]. Appl Therm Eng 91:225–233. https://doi.org/10.1016/j.applthermaleng.2015.08.023

    Article  CAS  Google Scholar 

  12. T.H.T Nguyen, J.C. Chen, C. Hu, et al. Numerical analysis of thermal stress and dislocation density distributions in large size multi-crystalline silicon ingots during the seeded growth process[J]. J Cryst Growth, 2016, 468:316–320. https://doi.org/10.1016/j.jcrysgro.2016.09.061

  13. Chen L, Dai B (2012) Optimization of power consumption on silicon directional solidification system by using numerical simulations[J]. J Cryst Growth 354:86–92. https://doi.org/10.1016/j.jcrysgro.2012.06.010

    Article  CAS  Google Scholar 

  14. S.G. Nagarajan, M. Srinivasan, K. Aravinth, P. Ramasamy Improving heat transfer properties of DS furnace by the geometrical modifications for enhancing the multi crystalline silicon ingot (mc-Si) quality using transient simulation[J]. Silicon, 2018:1–11. https://doi.org/10.1007/s12633-018-9870-8

  15. Nagarajan SG, Sanmugavel S, Kesavan V et al (2019) Influence of additional insulation block on multi-crystalline silicon ingot growth process for PV appilications[J]. J Cryst Growth 516:10–16. https://doi.org/10.1016/j.jcrysgro.2019.03.017

    Article  CAS  Google Scholar 

  16. Kesavan V, Srinivasan M, Ramasamy P (2019) Numerical investigation of directional solidification process for improving multi-crystalline silicon ingot quality for photovoltaic applications[J]. Mater Lett 241:180–183. https://doi.org/10.1016/j.matlet.2018.12.129

    Article  CAS  Google Scholar 

  17. Chen WL, Wu ZY, Zhong GX et al (2016) Optimization of heat transfer by adjusting power ratios between top and side heaters for casting high-performance multi-crystalline silicon ingots[J]. J Cryst Growth 451:155–160. https://doi.org/10.1016/j.jcrysgro.2016.07.031

    Article  CAS  Google Scholar 

  18. Smirnova OV, Mamedov VM, Kalaev VV (2014) Numerical modeling of stress and dislocations in Si ingots grown by seed-directional solidification and comparison to experimental data[J]. Cryst Growth Des 14(11):5532–5536. https://doi.org/10.1021/cg500736j

    Article  CAS  Google Scholar 

  19. Wu ZY, Zhong GX, Zhou XC et al (2016) Upgrade of the hot zone for large-size high-performance multi-crystalline silicon ingot casting[J]. J Cryst Growth 441:58–63. https://doi.org/10.1016/j.jcrysgro.2016.02.012

    Article  CAS  Google Scholar 

  20. Yang X, Ma WH, Lv GQ et al (2014) A modified vacuum directional solidification system of multicrystalline silicon based on optimizing for heat transfer[J]. J Cryst Growth 400:7–14. https://doi.org/10.1016/j.jcrysgro.2014.04.025

    Article  CAS  Google Scholar 

  21. Ma W, Zhong G, Sun L et al (2012) Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells[J]. Sol Energy Mater Sol Cells 100:231–238. https://doi.org/10.1016/j.solmat.2012.01.024

    Article  CAS  Google Scholar 

  22. Wei J, Zhang H, Zheng LL et al (2009) Modeling and improvement of silicon ingot directional solidification for industrial production systems[J]. Sol Energy Mater Sol Cells 93(9):1531–1539. https://doi.org/10.1016/j.solmat.2009.04.001

    Article  CAS  Google Scholar 

  23. Li J, Chen YF, Hong RJ (2016) Modeling and optimization of the feedstock melting for industrial photovoltaic multi-crystalline silicon ingot[J]. Sol Energy 139:108–115. https://doi.org/10.1016/j.solener.2016.09.024

    Article  CAS  Google Scholar 

  24. Ma X, Zheng LL, Zhang H et al (2011) Thermal system design and optimization of an industrial silicon directional solidification system[J]. J Cryst Growth 318(1):288–292. https://doi.org/10.1016/j.jcrysgro.2010.10.102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Hunan Province Science and Technology Department ‘Innovative Venture Technology Investment Project’ number 2017GK5002 and by Fundamental Research Funds for the Central Universities of Central South University ‘key project’ CX20190199. We thank B.X. Zhao and X.W. Cai for discussions and experimental and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jicheng Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Ren, Y., Cao, Y. et al. Effect of Hot Zone Design on Polycrystalline Silicon Ingot Growth Process by Seeded Directional Solidification. Silicon 13, 523–530 (2021). https://doi.org/10.1007/s12633-020-00450-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00450-0

Keywords

Navigation