Skip to main content
Log in

Highly Efficient Removal of Alizarin Yellow R Dye from Aqueous Solution Using a Synthetic Hydrocalumite-Type LDH (CaAl–NO3)

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

CaAl-Layered double hydroxide (LDH) of hydrocalumite-type with nitrate anions in the inter-lamellar region was synthesized via the co-precipitation method at fixed pH and with a selected Ca/Al molar ratio of the starting salts equal to two. The obtained CaAl–NO3 compound was characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). In this context, this material has been employed as an adsorbent for the retention of the reactive azo dye, alizarin yellow R (AYR), from an aqueous solution. To further investigate the practical potential of CaAl–NO3 for AYR dye adsorption, the effects of various parameters such as temperature, the concentration of dye, pH, adsorbent dose, and contact time on adsorption capacity were separately exanimated. The findings results suggest that a pH of 9 is more suitable for the AYR dye adsorption process. The adsorption kinetics was better explained by the pseudo-first-order model, and equilibrium was achieved after 30 min of contact. The equilibrium adsorption data of AYR dye on the prepared CaAl–NO3 was well fitted to the Langmuir model, and it was characterized by an excellent adsorption capacity of 2107 mg/g at 293 K. Thus, due to the 2D structure and its positively charged layers, CaAl–NO3 material exhibits an exceptional ability to remove alizarin yellow R dye from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.A. Hassaan, A. el Nemr, “Health and Environmental Impacts of Dyes: Review,” American Journal of Environmental Science and Engineering, 1(3), 64–67, 2017, https://doi.org/10.11648/j.ajese.20170103.11

    Article  Google Scholar 

  2. E. Forgacs, T. Cserháti, G. Oros, “Removal of synthetic dyes from wastewaters: A review,” Environment International, 30(7), 953–971, 2004. https://doi.org/10.1016/j.envint.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  3. M. Uygun, V. de la Asunción-Nadal, S. Evli, D.A. Uygun, B. Jurado-Sánchez, A. Escarpa, “Dye removal by laccase-functionalized micromotors”. Appl. Mater. Today 23, 101045 (Jun. 2021). https://doi.org/10.1016/j.apmt.2021.101045

    Article  Google Scholar 

  4. X. Zhang, J. Tian, P. Wang, T. Liu, M. Ahmad, T. Zhang, J. Guo, H. Xiao, J. Song, Highly-efficient nitrogen self-doped biochar for versatile dyes’ removal prepared from soybean cake via a simple dual-templating approach and associated thermodynamics. J. Clean. Prod. 332, 130069 (2022). https://doi.org/10.1016/j.jclepro.2021.130069

    Article  CAS  Google Scholar 

  5. K.-T. Chung, Azo dyes and human health: A review. Journal of Environmental Science and Health C 34(4), 233–261 (2016). https://doi.org/10.1080/10590501.2016.1236602

    Article  CAS  Google Scholar 

  6. S. Sultana, K. Islam, M.A. Hasan, H.M.J. Khan, M.A.R. Khan, A. Deb, M. Al Raihan, M.W. Rahman, Adsorption of crystal violet dye by coconut husk powder: isotherm, kinetics and thermodynamics perspectives. Environ. Nanotechnol. Monit. Manag. 17, 100651 (2022). https://doi.org/10.1016/j.enmm.2022.100651

    Article  CAS  Google Scholar 

  7. S. Pai, M.S. Kini, R. Mythili, R. Selvaraj, Adsorptive removal of AB113 dye using green synthesized hydroxyapatite/magnetite nanocomposite. Environmental Research (2022). https://doi.org/10.1016/j.envres.2022.112951

    Article  PubMed  Google Scholar 

  8. P. Banerjee, S. DasGupta, S. De, “Removal of dye from aqueous solution using a combination of advanced oxidation process and nanofiltration”. J. Hazard. Mater. 140, no. 1–2 (Feb. 2007). https://doi.org/10.1016/j.jhazmat.2006.06.075. pp. 95–103

    Article  CAS  Google Scholar 

  9. A.H. Konsowa, Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor. Desalination. 158, 233–240 (2003). https://doi.org/10.1016/S0011-9164(03)00458-2

    Article  CAS  Google Scholar 

  10. B. Shi, G. Li, D. Wang, C. Feng, H. Tang, Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species. J. Hazard. Mater. 143, 1–2 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.076

    Article  CAS  Google Scholar 

  11. Y.F. Wang, B.Y. Gao, Q.Y. Yue, Y. Wang, Z.L. Yang, Removal of acid and direct dye by epichlorohydrin-dimethylamine: flocculation performance and floc aggregation properties. Bioresour. Technol. 113, 265–271 (2012). https://doi.org/10.1016/j.biortech.2011.11.106

    Article  CAS  PubMed  Google Scholar 

  12. J.H. Mo, Y.H. Lee, J. Kim, J.Y. Jeong, J. Jegal, “Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse”. Dyes Pigm 76(2), 429–434 (2008). https://doi.org/10.1016/j.dyepig.2006.09.007

    Article  CAS  Google Scholar 

  13. Y. Wang, X. Wei, Y. Qi, H. Huang, Efficient removal of bisphenol-A from water and wastewater by Fe2O3-modified graphene oxide. Chemosphere (2021). https://doi.org/10.1016/j.chemosphere.2020.127563

    Article  PubMed  PubMed Central  Google Scholar 

  14. R. Gurav, S.K. Bhatia, T.R. Choi, H.J. Kim, Y.K. Choi, H.J. Lee, S. Ham, J.Y. Cho, S.H. Kim, S.H. Lee, J. Yun, Y.H. Yang, Adsorptive removal of synthetic plastic components bisphenol-A and solvent black-3 dye from single and binary solutions using pristine pinecone biochar. Chemosphere. 296, 134034 (2022). https://doi.org/10.1016/j.chemosphere.2022.134034

    Article  CAS  PubMed  Google Scholar 

  15. I. Uzun, “Kinetics of the adsorption of reactive dyes by chitosan”. Dyes Pigm 70(2), 76–83 (2006). https://doi.org/10.1016/j.dyepig.2005.04.016

    Article  CAS  Google Scholar 

  16. I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Coll. Surf. A Physicochem. Eng. Asp. 264(1–3), 17–28 (2005). https://doi.org/10.1016/j.colsurfa.2005.03.027

    Article  CAS  Google Scholar 

  17. K.Y. Foo, B.H. Hameed, “An overview of dye removal via activated carbon adsorption process”. Desalin. Water Treat 19, no. 1–3 (2010). https://doi.org/10.5004/dwt.2010.1214. pp. 255–274

    Article  CAS  Google Scholar 

  18. R. Gong, M. Li, C. Yang, Y. Sun, J. Chen, Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J. Hazard. Mater. 121, 1–3 (2005). https://doi.org/10.1016/j.jhazmat.2005.01.029

    Article  CAS  Google Scholar 

  19. A. Gürses, Ç. Doǧar, M. Yalçin, M. Açikyildiz, R. Bayrak, S. Karaca, The adsorption kinetics of the cationic dye, methylene blue, onto clay. J. Hazard. Mater. 131(1–3), 217–228 (2006). https://doi.org/10.1016/j.jhazmat.2005.09.036

    Article  CAS  PubMed  Google Scholar 

  20. S.S. Tahir, N. Rauf, “Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay”. Chemosphere 63(11), 1842–1848 (2006). https://doi.org/10.1016/j.chemosphere.2005.10.033

    Article  CAS  PubMed  Google Scholar 

  21. I.M. Ahmed, M.S. Gasser, “Adsorption study of anionic reactive dye from aqueous solution to Mg-Fe-CO 3 layered double hydroxide (LDH)”. Appl. Surf. Sci. 259, 650–656 (Oct. 2012). https://doi.org/10.1016/j.apsusc.2012.07.092

    Article  CAS  Google Scholar 

  22. T. Matschei, B. Lothenbach, F.P. Glasser, The AFm phase in portland cement. Cem. Concr Res. 37(2), 118–130 (2007). https://doi.org/10.1016/j.cemconres.2006.10.010

    Article  CAS  Google Scholar 

  23. K. Grover, S. Komarneni, H. Katsuki, “Synthetic hydrotalcite-type and hydrocalumite-type layered double hydroxides for arsenate uptake”. Appl. Clay Sci. 48(4), 631–637 (May 2010). https://doi.org/10.1016/j.clay.2010.03.017

    Article  CAS  Google Scholar 

  24. E. Pérez-Barrado, P. Salagre, L.F. Marsal, M. Aguiló, Y. Cesteros, F. Díaz, J. Pallarès, F. Cucinotta, L. Marchese, M.C. Pujol, Ultrasound-assisted reconstruction and delamination studies on CaAl layered double hydroxides. Appl. Clay Sci. 118, 116–123 (2015). https://doi.org/10.1016/j.clay.2015.08.043

    Article  CAS  Google Scholar 

  25. Z. Ferencz, Á. Kukovecz, Z. Kónya, P. Sipos, I. Pálinkó, Optimisation of the synthesis parameters of mechanochemically prepared CaAl-layered double hydroxide. Appl. Clay Sci. 112–113, 94–99 (2015). https://doi.org/10.1016/j.clay.2015.04.022

    Article  CAS  Google Scholar 

  26. H. Pöllmann, Cementitious Materials: Composition, Properties, Application. 2017. https://doi.org/10.1515/9783110473728

  27. M. Daud, A. Hai, F. Banat, M.B. Wazir, M. Habib, G. Bharath, M.A. Al-Harthi, A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH)– containing hybrids as promising adsorbents for dyes removal. J. Mol. Liq. 288, 110989 (2019). https://doi.org/10.1016/j.molliq.2019.110989

    Article  CAS  Google Scholar 

  28. M. Sánchez-Cantú, C. Barcelos-Santiago, C.M. Gomez, E. Ramos-Ramírez, M.D.L. Ruiz Peralta, N. Tepale, V.J. González-Coronel, A. Mantilla, F. Tzompantzi, Evaluation of hydrocalumite-like compounds as catalyst precursors in the photodegradation of 2,4-dichlorophenoxyacetic acid, Int. J. Photoenergy. 2016, 5256941 (2016). https://doi.org/10.1155/2016/5256941

    Article  CAS  Google Scholar 

  29. P. Zhang, G. Qian, H. Shi, X. Ruan, J. Yang, R.L. Frost, Mechanism of interaction of hydrocalumites (Ca/Al-LDH) with methyl orange and acidic scarlet GR. J. Coll. Interface Sci. 365(1), 110–116 (2012). https://doi.org/10.1016/j.jcis.2011.08.064

    Article  CAS  Google Scholar 

  30. F.P. de Sá, B.N. Cunha, L.M. Nunes, Effect of pH on the adsorption of sunset yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3). Chem. Eng. J. 215–216, 122–127 (2013). https://doi.org/10.1016/j.cej.2012.11.024

    Article  CAS  Google Scholar 

  31. J. Missau, D.A. Bertuol, E.H. Tanabe, “Highly efficient adsorbent for removal of Crystal Violet Dye from Aqueous Solution by CaAl/LDH supported on Biochar”. Appl. Clay Sci. 214, 106297 (2021). https://doi.org/10.1016/j.clay.2021.106297

    Article  CAS  Google Scholar 

  32. J.Y. Yang, X.Y. Jiang, F.P. Jiao, J.G. Yu, “The oxygen-rich pentaerythritol modified multi-walled carbon nanotube as an efficient adsorbent for aqueous removal of alizarin yellow R and alizarin red S”. Appl. Surf. Sci. 436, 198–206 (Apr. 2018). https://doi.org/10.1016/j.apsusc.2017.12.029

    Article  CAS  Google Scholar 

  33. M.H. Barzegar, M. Ghaedi, V. MadadiAvargani, M.M. Sabzehmeidani, F. Sadeghfar, R. Jannesar, Electrochemical synthesis and efficient photocatalytic degradation of azo dye alizarin yellow R by Cu/CuO nanorods under visible LED light irradiation using experimental design methodology. Polyhedron 158, 506–514 (2019). https://doi.org/10.1016/j.poly.2018.10.040

    Article  CAS  Google Scholar 

  34. X. Li, J. Zhang, Y. Jiang, M. Hu, S. Li, Q. Zhai, Highly efficient biodecolorization/degradation of congo red and alizarin yellow r by chloroperoxidase from caldariomyces fumago: catalytic mechanism and degradation pathway. Ind. Eng. Chem. Res. 52(38), 13572–13579 (2013). https://doi.org/10.1021/ie4007563

    Article  CAS  Google Scholar 

  35. L. Zheng, S. Xia, X. Lu, Z. Hou, “Transesterification of glycerol with dimethyl carbonate over calcined Ca-Al hydrocalumite”. Cuihua Xuebao/Chinese Journal of Catalysis 36(10), 1759–1765 (Oct. 2015). https://doi.org/10.1016/S1872-2067(15)60915-9

    Article  CAS  Google Scholar 

  36. Y. Yu, Y.Y. Zhuang, Z.H. Wang, Adsorption of water-soluble dye onto functionalized resin. J. Coll. Interface Sci. 242(2), 288–293 (2001). https://doi.org/10.1006/jcis.2001.7780

    Article  CAS  Google Scholar 

  37. R. Segni, L. Vieille, F. Leroux, C. Taviot-Guého, “Hydrocalumite-type materials: 1. Interest in hazardous waste immobilization”. J. Phys. Chem. Solids 67, no. 5–6 (May 2006). https://doi.org/10.1016/j.jpcs.2006.01.081. pp. 1037–1042

    Article  CAS  Google Scholar 

  38. Gu, Renaudi, M. Fpan, The lamellar double-hydroxide (LDH) compound with composition 3CaO.AI203.Ca(NO3)2-10H20. Soc. Lond (1999). https://doi.org/10.1107/S0108270199003066

    Article  Google Scholar 

  39. B. Bekele, L. Lundehøj, N.D. Jensen, U.G. Nielsen, C. Forano, Sequestration of orthophosphate by Ca2Al-NO3 layered double hydroxide–Insight into reactivity and mechanism. Appl. Clay Sci. 176, 49–57 (2019). https://doi.org/10.1016/j.clay.2019.04.018

    Article  CAS  Google Scholar 

  40. J.L. Milagres, C.R. Bellato, R.S. Vieira, S.O. Ferreira, C. Reis, Preparation and evaluation of the Ca-Al layered double hydroxide for removal of copper(II), nickel(II), zinc(II), chromium(VI) and phosphate from aqueous solutions. J. Environ. Chem. Eng. 5(6), 5469–5480 (2017). https://doi.org/10.1016/j.jece.2017.10.013

    Article  CAS  Google Scholar 

  41. S.S. Shafiei, M. Solati-Hashjin, H. Rahim-Zadeh, A. Samadikuchaksaraei, “Synthesis and characterisation of nanocrystalline Ca-Al layered double hydroxide {[Ca2Al(OH)6]NO3·nH 2O}: in vitro study”. Adv. Appl. Ceram 112(1), 59–65 (Jan. 2013). https://doi.org/10.1179/1743676112Y.0000000045

    Article  CAS  Google Scholar 

  42. H. Ouassif, E.M. Moujahid, R. Lahkale, R. Sadik, F.Z. Bouragba, E. mouloudi Sabbar, M. Diouri, Zinc-aluminum layered double hydroxide: high efficient removal by adsorption of tartrazine dye from aqueous solution. Surf. Interfaces. 18, 100401 (2020). https://doi.org/10.1016/j.surfin.2019.100401

    Article  CAS  Google Scholar 

  43. H. Zaghouane-Boudiaf, M. Boutahala, L. Arab, Removal of methyl orange from aqueous solution by uncalcined and calcined MgNiAl layered double hydroxides (LDHs). Chem. Eng. J. 187, 142–149 (2012). https://doi.org/10.1016/j.cej.2012.01.112

    Article  CAS  Google Scholar 

  44. G. Rathee, A. Awasthi, D. Sood, R. Tomar, V. Tomar, R. Chandra, A new biocompatible ternary layered double hydroxide adsorbent for ultrafast removal of anionic organic dyes. Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-52849-4

    Article  CAS  Google Scholar 

  45. X. You, R. Wang, Y. Zhu, W. Sui, D. Cheng, Comparison of adsorption properties of a cellulose-rich modified rice husk for the removal of methylene blue and aluminum (III) from their aqueous solution. Ind. Crops Prod. (2021). https://doi.org/10.1016/j.indcrop.2021.113687

    Article  Google Scholar 

  46. M. Priyanka, M.P. Saravanakumar, “Ultrahigh adsorption capacity of starch derived zinc based carbon foam for adsorption of toxic dyes and its preliminary investigation on oil-water separation”. J. Clean. Prod. 197, 511–524 (Oct. 2018). https://doi.org/10.1016/j.jclepro.2018.06.197

    Article  CAS  Google Scholar 

  47. Z. Heidarinejad, O. Rahmanian, M. Fazlzadeh, M. Heidari, “Enhancement of methylene blue adsorption onto activated carbon prepared from date press cake by low frequency ultrasound”. J. Mol. Liq 264, 591–599 (Aug. 2018). https://doi.org/10.1016/j.molliq.2018.05.100

    Article  CAS  Google Scholar 

  48. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1–39 (1898)

    Google Scholar 

  49. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  50. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918). https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  51. H. Freundlich, “Über die Adsorption in Lösungen”. Z. für Phys. Chemie 57U(1), 385–470 (1907). https://doi.org/10.1515/zpch-1907-5723.

    Article  Google Scholar 

  52. Y.S. Ho, C.C. Wang, Sorption equilibrium of mercury onto ground-up tree fern. J. Hazard Mater. 156(1–3), 398–404 (2008). https://doi.org/10.1016/j.jhazmat.2007.12.030

    Article  CAS  PubMed  Google Scholar 

  53. H.N. Tran, S.J. You, H.P. Chao, Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Manage. Res. 34(2), 129–138 (2016). https://doi.org/10.1177/0734242X15615698

    Article  CAS  Google Scholar 

  54. L. Adlnasab, M. Shabanian, M. Ezoddin, A. Maghsodi, Amine rich functionalized mesoporous silica for the effective removal of alizarin yellow and phenol red dyes from waste waters based on response surface methodology. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 226, 188–198 (2017). https://doi.org/10.1016/j.mseb.2017.09.017

    Article  CAS  Google Scholar 

  55. W.T. Al-Rubayee, O.F. Abdul-Rasheed, N.M. Ali, Preparation of a modified nanoalumina sorbent for the removal of alizarin yellow R and methylene blue dyes from aqueous solutions. J. Chem. (2016). https://doi.org/10.1155/2016/4683859

    Article  Google Scholar 

  56. J. Zolgharnein, N. Asanjrani, M. Bagtash, G. Azimi, Multi-response optimization using taguchi design and principle component analysis for removing binary mixture of alizarin red and alizarin yellow from aqueous solution by nano γ-alumina. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 126, 291–300 (2014). https://doi.org/10.1016/j.saa.2014.01.100

    Article  CAS  PubMed  Google Scholar 

  57. K. Wu, J. Yu, X. Jiang, Multi-walled carbon nanotubes modified by polyaniline for the removal of alizarin yellow R from aqueous solutions. Adsorpt. Sci. Technol. 36(1–2), 198–214 (2018). https://doi.org/10.1177/0263617416687564

    Article  CAS  Google Scholar 

  58. I. Anastopoulos, G.Z. Kyzas, Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J. Mol. Liq. 218, 174–185 (2016). https://doi.org/10.1016/j.molliq.2016.02.059

    Article  CAS  Google Scholar 

  59. H.N. Tran, S.J. You, A. Hosseini-Bandegharaei, H.P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res. 120, 88–116 (2017). https://doi.org/10.1016/j.watres.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  60. P.S. Ghosal, A.K. Gupta, An insight into thermodynamics of adsorptive removal of fluoride by calcined Ca–Al–(NO3) layered double hydroxide. RSC Adv. 5(128), 105889–105900 (2015). https://doi.org/10.1039/c5ra20538g

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

This work was done under the supervision of [MB] and [EMM]. All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [IC], [HO] and [OM]. The first draft of the manuscript was written by [IC] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ilyas Chouaybi.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouaybi, I., Ouassif, H., Matbout, O. et al. Highly Efficient Removal of Alizarin Yellow R Dye from Aqueous Solution Using a Synthetic Hydrocalumite-Type LDH (CaAl–NO3). J Inorg Organomet Polym 33, 1517–1526 (2023). https://doi.org/10.1007/s10904-023-02552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02552-9

Keywords

Navigation