Skip to main content
Log in

Reverse Precipitation Synthesis of ≤ 10 nm Magnetite Nanoparticles and Their Application for Removal of Heavy Metals from Water

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Fe3O4 nanoparticles having size ≤ 10nm were prepared by reverse co-precipitation method. This is a rapid, simple, and cost-effective (only one Fe-salt is used) synthesis route in only one step reaction without applying temperature, surfactants or inert gases as compared with previously published routes. The prepared nano particles were investigated by X-ray (XRD), transmission electron microscope (TEM), thermal gravimetric analysis (TGA), fourier transform infrared (FT-IR) and vibrating sample magnetometer (VSM). These nanoparticles were appraised as an adsorbents for eliminating Pb(II), Cu(II), and Zn(II) from water. The equilibrium data was analyzed by Langmuir, Freundlich, and (D-R) isotherms. Pseudo-second-order, Elovich and intra-particle diffusion models were used to study the kinetics of reaction. Adsorbent cycling was performed to examine its stability and reusability. The results revealed that the adsorption efficiency trend was Pb>Cu>Zn at pH 5.5, 6.5 and 6, respectively and influenced by ionic radius of cations. The maximum suitable mass of adsorbent was 200mg, after which the agglomeration occurred and adsorption efficiency decreased. It is indicated that the adsorption process was well fitted to Langmuir. Also, the adsorption followed the pseudo-second-order-model for Pb(II) and Zn(II), but Elovich for Cu(II). Adsorbent retained about 90% with Pb(II), 40% with Cu(II), and 30% with Zn(II) of its initial sorption efficiency after 3 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown KK (2002) Environmental data water scarcity: Forecasting the future with spotty data. Science 297:926–927

    CAS  PubMed  Google Scholar 

  2. Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136

    Google Scholar 

  3. Al-Musharsfi SK, Mahmoud IY, Al-Bahry SN (2013) Heavy metal poll-ution from treated sewage effluent. APCBEE Procedia 5:344–348

    Google Scholar 

  4. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contami-nation of air, water and soils by trace metals. Nature 333:134–139

    CAS  PubMed  Google Scholar 

  5. Rozada F, Otero M, Moran A, Carcia AL (2008) Adsorption of heavy metals onto sewage sludge derived materials. Bio Res Technol 99(14):6332–6338

    CAS  Google Scholar 

  6. Reddad Z, Gerente C, Andres Y, Thibault J, Le Cloirec P (2003) Cadmium and Lead adsorption by a natural polysaccharide in MF membrane reactor: experimental analysis and modeling. Water Res 37:3983–3991

    CAS  PubMed  Google Scholar 

  7. Fan HJ, Shu HY, Yang HS, Chen WC (2006) Characteristics of landfill leachates in central Taiwan. Sci Total Environ 361:25– 37

    CAS  PubMed  Google Scholar 

  8. Chen JP, Wang W, (2000) Removing copper, zinc and lead ion by granular activated carbon in pretreated fixed-bed columns. Sep Technol 19:157–167

    CAS  Google Scholar 

  9. Gupta VK, Suhas (2009) An application of low-cost adsorbents for dye removal, a review. J Environ Manag 90:2313–2342

    CAS  Google Scholar 

  10. Gupta VK, Rastogi A, Saini V, Jain N (2006) Bio-sorption of copper (II) from aqueous solutions by Spirogyra species. J Colloid Interface Sci 296(1):59–63

    CAS  PubMed  Google Scholar 

  11. Xu M, Zhang Y, Zhang Z, Shen Y, Zhao M, Pan G et al (2011) Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Chem Eng J 168(2):737–745

    CAS  Google Scholar 

  12. Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667

    Google Scholar 

  13. Gupta VK, Ali I, Saini VK (2007) Defluoridation of wastewater using waste carbon slurry. Water Res 41(15):3307–3316

    CAS  PubMed  Google Scholar 

  14. Saleh TA, Gupta VK (2012) Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ Sci Pollut Res 19(4):1224–1228

    CAS  Google Scholar 

  15. Lechner MD, Machtle W (1999) Characterization of nanoparticles. Macromol Symp 145:1–7

    CAS  Google Scholar 

  16. Zhang L, Fang M (2010) Nano materials in pollution trace detection and environmental improvement. Nano Today 5(2):128–142

    CAS  Google Scholar 

  17. Xu P, Zeng GM, Huangetal DL (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    CAS  PubMed  Google Scholar 

  18. Warner CL, Chouyyok W, Mackie KE et al (2012) Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir 28(8):3931–3937

    CAS  PubMed  Google Scholar 

  19. Karatapanis AE, Petrakis DE, Stalikas CD (2012) A layered magnetic iron/iron oxide nanoscavenger for the analytical enrichment of ng-L-1 concentration levels of heavy metals from water. Analytica Chimica Acta 726:22–27

    CAS  PubMed  Google Scholar 

  20. Yang H, Tian Z, Wang J, Yang S (2012) A magnetic resonance imaging nanosensor for Hg (II) based on thymidine functionalized super magnetic iron oxide nanoparticles. Sensors and Actuators B 161(1):429–433

    CAS  Google Scholar 

  21. Gleiter H, Marquardt P (1984) Nanocrystalline structures: an approach to new materials Z. Metallkd 75:263–267

    CAS  Google Scholar 

  22. Hu F, Wei L, Zhou Z, Ran Y, Li Z, Gao M (2006) Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18:2553–2556

    CAS  Google Scholar 

  23. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium ion battery applications. Nat Mater 5:567–573

    CAS  PubMed  Google Scholar 

  24. Wang W, Howe JY, Gu B (2008) Structure and morphology evolution of hematite (α-Fe2O3) nanoparticles in forced hydrolysis of ferric chloride. J Phys Chem C 112:9203–9208

    CAS  Google Scholar 

  25. Xie J, Chen K, Lee H-Y, Xu C, Hsu AR, Peng S, Chen X, Sun S (2008) Ultra-small c (RGDyK) coated Fe3O4 nanoparticles and their specific targeting to integrin α v β3-rich tumor cells. J Am Chem Soc 2130:7542–7543

    Google Scholar 

  26. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    CAS  Google Scholar 

  27. Signorini L, Pasquini L, Savini L, Carboni R, Boscherini F, Bonetti E, Giglia A, Pedio M, Mahne N, Nannarone S (2003) Size-dependent oxidation in iron/iron oxide core-shell nanoparticles, vol 68, p 195423

    Google Scholar 

  28. Klein DL, McEuen PL, Katari JEB, Roth R, Alivisatos AP (1996) An approach to electrical studies of single nanocrystals, Appl. Phys Lett 68:2574–2576

    CAS  Google Scholar 

  29. Liu L, Kou HZ, Mo W, Liu H, Wang Y (2006) Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J Phys Chem B 110(33):15218–15223

    CAS  PubMed  Google Scholar 

  30. Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity, Biointerphases

  31. Abdelaal HM, Zawrah MF, Harbrecht B (2014) Facile one-pot fabrication of hollow porous silica nanoparticles. Chem Eur J 20(3):673–677

    CAS  PubMed  Google Scholar 

  32. Sadek HEH, Khattab RM, Gaber AA, Zawrah MF (2014) Nano Mg1−xNixAl2O4 Spinel Pigments for Advanced Applications. Spectrochimica Acta : Molecular and Biomolecular Spectroscopy 125 (5):353–358

    CAS  PubMed  Google Scholar 

  33. El Rafie A, Zawrah MF (2014) Effect of alkali concentration and reaction time on the morphology of ZnO nano-microparticles prepared by hydrothermal method. J Ceram Sci Tech 05(03):193–198

    Google Scholar 

  34. Zawrah MF, Zayed HA, Essaway RA, Abdel Fattah AH, Taha MA (2013) Preparation by mechanical alloying, characterization and sintering of Cu–20 wt-% Al2O3 nanocomposites. Mater Des 46:485–490

    CAS  Google Scholar 

  35. Zawrah MF, Ahmed H, El-Baly NE (2012) Fabrication of Al2O3-20 Vol% Al nanocomposite powder using high energy milling. Mater Res Bull 47:655–661

    CAS  Google Scholar 

  36. Zawrah MF, Zayed MA, Ali MRK (2012) Synthesis and characterization of SiC and SiC/Si3 N 4 composite nano powders from waste material. J Hazard Mater 227–228(15):250–256

    PubMed  Google Scholar 

  37. Suri J, Shaw LL, Zawrah MF (2011) Tailoring the relative Si3N4 and SiC contents in Si3 N 4/SiC nanopowders through carbothermic reduction and nitridation of silica fume, Int J Appl Ceram Technol, 1–13

  38. Zawrah MF, Shehata AB, Kishar EA, Yamani RN (2011) Synthesis, hydration and sintering of calcium aluminate nanopowder for biomedical applications. Comptes Rendus Chimie 14:611–618

    CAS  Google Scholar 

  39. Suri J, Shaw LL, Zawrah MF (2011) Synthesis of carbon-free Si3N4/SiC nanopowders using silica fume. Ceram Int 37:3477–3487

    CAS  Google Scholar 

  40. Zawrah MF, Abdel El-Moez SI (2011) Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Sci J 8(4):26–30

    Google Scholar 

  41. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nanotoday 1:44–48

    Google Scholar 

  42. Zahn M (1980) Transaction on magnetite. IEEE 16(2):275

    Google Scholar 

  43. Nishio K, Ikeda M, Gokon N, Tsubouchi S et al (2007) Preparation of size-controlled (30?100 nm) magnetite nanoparticles for biomedical applications. J Magn Magn Mater 310:2408– 2410

    CAS  Google Scholar 

  44. Sudimack JB, Lee RJ (2000) Targeted drug delivery via the floated receptor. Adv Drug Deliv Rev 41:147–162

    CAS  PubMed  Google Scholar 

  45. Jordan A, Scholz R, Maier-hauff K, Johannsen M et al (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 22:5118–126

    Google Scholar 

  46. Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Techn 37:161–164

    CAS  Google Scholar 

  47. Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides – a review. Int J Eng Sci Technol 2(8):127–146

    Google Scholar 

  48. Xu XL, Guo JD, Wang YZ (2000) A novel technique by the citrate pyrolysis for preparation of iron oxide nanoparticles. Mater Sci Eng B 77:207

    Google Scholar 

  49. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    CAS  PubMed  Google Scholar 

  50. Ciobanu CS, Iconaru SL, Gyorgy E et al (2012) Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique. Chem Cent J 6(1):17

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ahmed N, Michelin-Jamois M, Fessi H, Elaissari A (2012) Modified double emulsion process as a new route to prepare submicron biodegradable magnetic/polycaprolactone particles for in vivo theranostics. Soft Matter 8(8):2554

    CAS  Google Scholar 

  52. Bae H, Ahmad T, Rhee I, Chang Y, Jin S-U, Hong S (2012) Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett 7(1):44

    PubMed  PubMed Central  Google Scholar 

  53. Wang X, Zhou J, Miao C, Wang Y, Wang H, Ma C, Sun S (2012) Synthesis and size control of ferric oxide nanoparticles via a hydrothermal stripping route. J Nanoparticle Res 14(4): 783

    Google Scholar 

  54. Darbandi M, Stromberg F, Landers J, Reckers N, Sanyal B, Keune W, Wende H (2012) Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J Phys D Appl Phys 45(19):195001

    Google Scholar 

  55. Odenbach S, Thurm S (2002) Magnetoviscous effects in ferrofluids. NP 594:185–201

    CAS  Google Scholar 

  56. Bychko I (2012) TPR Study of core-shell Fe@Fe3O4 nanoparticles supported on activated carbon and carbon nanotubes. Adv Mater Phys Chem 2(1):17–22

    CAS  Google Scholar 

  57. Walter D (2006) Characterization of synthetic hydrous hematite pigments, Thermochim Acta

  58. Prakash A, McCormick AV, Zachariah MR (2004) Aero-Sol-Gel synthesis of nanoporous iron-oxide particles: A potential oxidizer for nanoenergetic materials. Chem Mater 16:1466–1471

    CAS  Google Scholar 

  59. Karunaratne V, Priyadharshana N, Gunasekara G, Kottegoda S, Senaratne A (2012) Process for preparation of nanoparticles from magnetite ore, US20120056121 A1

  60. Baumgartner J, Bertinetti L, Widdrat M, Hirt AM, Faivre D (2013) Formation of magnetite nanoparticles at low temperature: From superparamagnetic to stable single domain particles, Plots One. https://doi.org/10.1371/journalPone0057070

  61. Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528

    CAS  Google Scholar 

  62. Mahmed N, Heczko O, Söderberg O, Hannula SP (2011) Room temperature synthesis of magnetite (Fe3δO4) nanoparticles by a simple reverse co-precipitation method. IOP Conf Ser Mater Sci Eng 18:032020. https://doi.org/10.1088/1757-899X/18/3/032020

    Google Scholar 

  63. Maity D, Agrawal DC (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308:46– 55

    CAS  Google Scholar 

  64. Peng S, Wang C, Xie J, Sun S (2006) Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Chem Soc 128:10676–10677

    CAS  PubMed  Google Scholar 

  65. Ge J, Hu Y, Biasini M, Dong C, Guo J, Beyermann W, Yin Y (2007) One-step synthesis of highly water-soluble magnetite colloidal nanocrystals. Chem Eur J 13:7153–7161

    CAS  PubMed  Google Scholar 

  66. Lu X, Niu M, Qiao R, Gao M (2008) Superdispersible PVP-coated Fe3O4 nanocrystalsprepared by a one-pot reaction. J Phys Chem B 112(46):14390–14394

    CAS  PubMed  Google Scholar 

  67. Li Z, Chen H, Bao H, Gao M (2004) One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater 16:1391–1393

    CAS  Google Scholar 

  68. Vargas J, Zysler R (2005) Tailoring the size in colloidal iron oxide magnetic nanoparticles. Nanotechnology 16:1474–1476

    CAS  Google Scholar 

  69. Bandhu A, Mukherjee S, Acharya S, Modak S, Brahma S, Das D, Chakrabarti PK (2009) Dynamic magnetic behavior and Mössbauer effect measure-ements of magnetite nanoparticles prepared by a new technique in the co-precipitation method. Solid State Commun 149:1790–1794

    CAS  Google Scholar 

  70. Ozkaya T, Toprak M, Baykal A, Kavas H, Koseoglu Y, Aktas B (2009) Synthesis of Fe3O4 nanoparticles at 100 C and its magnetic characterization. J Alloys Compd 472:18–23

    CAS  Google Scholar 

  71. Alibeigi S, Vaezi MR (2008) Phase transformation of iron oxide nano-particles by varying the molar ratio of Fe2+: Fe3+. Chem Eng Technol 31:1591

    CAS  Google Scholar 

  72. Tamez C, Hernandez R, Parsons J (2015) Removal of Cu(II) and Pb(II) from aqueous solution using engineered iron oxide nanoparticles, Microchemical Journal. https://doi.org/10.1016/jmicroc201510028

  73. Beyaz S, Kockara H, Tanrisever T (2009) Simple synthesis of super-paramagnetic magnetite nanoparticles and ion effect on magnetic fluids. J Optoelectron Adv Mater 1(3):447–450

    Google Scholar 

  74. Mizukoshi Y, Shuto T, Masahashi N, Tanabe S (2009) Preparation of super-paramagnetic magnetite nanoparticles by reverse precipitation method: contribution of sonochemically generated oxidants. Ultrason Sonochem 16:525

    CAS  PubMed  Google Scholar 

  75. Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N (2011) Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. J Chem Eng 172:37–46

    CAS  Google Scholar 

  76. Waldron RD (1999) Infrared spectra of ferrites. Phys Rev 99:1727–1735

    Google Scholar 

  77. Ma M, Zhang Y, Yu W, Shen HY, Zhang HQ, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf Physicochem Eng Asp 212:219–226

    CAS  Google Scholar 

  78. Ko D, Cheung C, Keith K, Choy C, GMcKay PJ (2004) Sorption equilibria of metal ions on bone char. Chemosphere 54:273– 281

    CAS  PubMed  Google Scholar 

  79. Zhou Y, Nie H, Branford-White C, Zhu L (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with a keto-glutaric acid. J Colloid InterfSci 330:29–37

    CAS  Google Scholar 

  80. Hall K, Eagleton L, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5(2):212–223

    CAS  Google Scholar 

  81. Huang C, Chung Y, Liou M (1996) Adsorption of Cu(II) and Ni(II) by pelletized biopolymer. J Hazard Mater 45:265–277

    CAS  Google Scholar 

  82. Ozay O, Ekici S, Baran Y, Aktas N, Sahiner N (2009) Removal of toxic metal ions with magnetic hydrogels. Water Res 43:4403–4411

    CAS  PubMed  Google Scholar 

  83. Wang S, Gong W, Liu X, Yao Y, Gao B, Yue Q (2007) Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep PurifTechnol 58:17–23

    CAS  Google Scholar 

  84. Hu J, Zhao D, Wang X (2011) Removal of Pb(II) and Cu(II) from aqueous solution using multiwalled carbon nanotubes/iron oxide magnetic comp-osites. Water Sci Technol 63:917–923

    CAS  PubMed  Google Scholar 

  85. Phuengprasop T, Sittiwong J, Unob F (2011) Removal of heavy metal ions by iron oxide coated sewage sludge. J Hazard Mater 186:502–507

    CAS  PubMed  Google Scholar 

  86. Rao G, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep PurifTechnol 58:224–231

    CAS  Google Scholar 

  87. Huang S, Chen D (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. JHazard Mater 163:174–179

    CAS  Google Scholar 

  88. Dogan M, Turkyilmaz A, Alkan M, Demirbas O (2009) Adsorption of copper (II) ions onto sepiolite and electro-kinetic properties. Desalination 238:257–270

    CAS  Google Scholar 

  89. Wang Y, Chen J, Cui Y, Wang S, Zhou D (2009) Effects of low-molecular weight organic acids on Cu(II) adsorption onto hydroxyapatite nanoparticles. J Hazard Mater 162:1135–1140

    CAS  PubMed  Google Scholar 

  90. Shukla S, Gaikar V, Pai R, Suryavanshi U (2009) Batch and column adsorption of Cu (II) on unmodified and oxidized coir. Sep Sci Technol 44:40–62

    CAS  Google Scholar 

  91. Souza DM, Andrade AL, Fabris J et al (2008) Synthesis and in vitro evaluation of toxicity of silica-coated magnetite nanoparticles. J Non-Cryst Solids 354(42):4894–4897

    CAS  Google Scholar 

  92. Kolodyńska D, Hubicki Z, Skiba A (2009) Heavy metal ions removal in the presence of 1-hydroxyethane-1,1- diphosphonic acid from aqueous solutions on polystyrene anion exchangers. Ind Eng Chem Res 48(23):10584–10593

    Google Scholar 

  93. Farajtabar A, Gharib F, Jamaat P, Safari N (2008) Complexation of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin with zinc (II) ions in aqueous solution. J Chem Eng Data 53 (2):350– 354

    CAS  Google Scholar 

  94. Bayramo G, Arica M (2008) Removal of heavy mercury (II), cadmium (II) and zinc (II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143(1–3):133– 140

    Google Scholar 

  95. Fan T, Liu Y, Feng B, Zeng G, Yang C, Zhou M, Zhou H, Tan Z, Wang X (2008) Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. J Hazard Mater 160:655– 661

    CAS  PubMed  Google Scholar 

  96. Chen A, Yang C, Chen C, Chen C, Chen C (2009) The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. J Hazard Mater 163:1068–1075

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud F. Zawrah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zawrah, M.F., El Shereefy, E.S.E. & Khudir, A.Y. Reverse Precipitation Synthesis of ≤ 10 nm Magnetite Nanoparticles and Their Application for Removal of Heavy Metals from Water. Silicon 11, 85–104 (2019). https://doi.org/10.1007/s12633-018-9841-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9841-0

Keywords

Navigation