Skip to main content
Log in

High Photoresponsivity Ru-doped ZnO/p-Si Heterojunction Diodes by the Sol-gel Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The ruthenium (Ru) doped nanostructure ZnO films were prepared by the sol-gel spin coating method. Undoped and Ru doped ZnO films are formed as fibers. The optical band gaps of undoped, 0.1 at.% and 0.5 at.% Ru doped ZnO films were found to be 3.31, 3.30 and 3.29 eV, respectively. The electrical properties of undoped and Ru-doped ZnO/p-Si heterostructure diodes were investigated under dark and visible light illuminations using current–voltage (I–V) measurements. The diodes exhibit a non-ideal I–V behavior due to the interfacial layer and the series resistance. The electrical parameters such as ideality factors, barrier heights and series resistances obtained from different methods were determined under illumination conditions. The diode having 0.1 at.% Ru doped ZnO exhibited the highest photoresponse of 7.75 × 103 under 100 mW/cm 2. The obtained results indicate that the photoresponsivity properties of the ZnO based photodiode can be improved with Ru content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morkoc H, Ozgur U (2009) Zinc oxide: Fundamentals, materials and device technology. Wiley, Berlin

    Book  Google Scholar 

  2. Yatskiv R, Grym J, Zdansky K, Piksova K (2012) Carbon 50:3928

    Article  CAS  Google Scholar 

  3. Liu HX, Huang BB, Wang ZY, Qin XY, Zhang XY, Wei JY, Dai Y, Wang P, Whangbo MH (2010) J Alloys Compd 507:326

    Article  CAS  Google Scholar 

  4. Zhong WW, Liu FM, Cai LG, Zhou CC, Ding P, Zhang H (2010) J Alloys Compd 499:265

    Article  CAS  Google Scholar 

  5. Pawar BN, Jadkar SR, Takwale MG (2005) J Phys Chem Solids 66:1779

    Article  CAS  Google Scholar 

  6. Benhaliliba M, Benouis CE, Aida MS, Juarez AS, Yakuphanoglu F, Silver AT (2010) J Alloys Compd 506:548

    Article  CAS  Google Scholar 

  7. Alivov YI, Kalinina EV, Cherenkov AE, Look DC, Ataev BM, Omaev AK, Chukichev MV, Bagnall DM (2003) Appl Phys Lett 83:4719

    Article  CAS  Google Scholar 

  8. Liang S, Sheng H, Liu Y, Huo Z, Lu Y, Shen H (2001) J Cryst Growth 225:110

    Article  CAS  Google Scholar 

  9. Mang A, Reimann K (1995) St. Rübenacke, Solid State Commun 94:251

    Article  CAS  Google Scholar 

  10. Lin Y, Hong C, Chuang H (2008) Appl Surf Sci 254:3780

    Article  CAS  Google Scholar 

  11. Soylu M, Al-Ghamdi AA, Omar A, Al-Hartomy FE-T, Yakuphanoğlu F. (2014) Phys E 64:240

    Article  CAS  Google Scholar 

  12. Benz J, Eisermann S, Klar PJ, Meyer BK, Detchprohm T, Wetzel C (2010) Mater Res Soc Symp Proc 1201:1201–H01-08

    Google Scholar 

  13. Hwang DK, Kang SH, Lim JH, Yang EJ, Oh JY, Yang JH, Park SJ (2005) Appl Phys Lett 86:222101

    Article  Google Scholar 

  14. Tian J-S, Liang M-H, Ho Y-T, Liu Y-A, Chang L (2008) J Cryst Growth 310:777

    Article  CAS  Google Scholar 

  15. Cui XZ, Zhang TC, Mei ZX, Liu ZL, Liu Y, Guo Y et al (2008) J Cryst Growth 310:5428

    Article  CAS  Google Scholar 

  16. Oh DC, Suzuki T, Kim JJ, Makino H, Hanada T, Yao T, Ko HJ (2005) Appl Phys Lett 87:162104

    Article  Google Scholar 

  17. Oh DC, Suzuki T, Kim JJ, Makino H, Hanada T, Cho MW, Yao T (2005) Appl Phys Lett 86:032909

    Article  Google Scholar 

  18. Ip K, Heo YW, Baik KH, Norton DP, Pearton SJ, Kim S, LaRoche JR, Ren F (2004) Appl Phys Lett 84:2835

    Article  CAS  Google Scholar 

  19. Liang S, Sheng H, Liu Y, Huo Z, Lu Y, Shen H (2001) Cryst Growth 225:110

    Article  CAS  Google Scholar 

  20. Yakuphanoğlu F., Caglar Y, Caglar M, Ilican S (2010) Mater Sci Semi Process 13:137

    Article  Google Scholar 

  21. Bo H, Quan M, Jing X, Lei Z, Sheng Z, Feng L, Cheng S, Ling S, Yue ZC, Shan YZ, Ting YY (2009) Mater Sci Semicond Process 12:248

    Article  CAS  Google Scholar 

  22. Urbach F (1953) Phys Rev 92:1434

    Article  Google Scholar 

  23. Adachi S (1999) Optical properties of crystalline and amorphous semiconductors. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  24. Chen T, S Liu Q, Xie C, Detaverier RL, Van Meirhaeghe X (2010) Appl Phys A 98:357

    Article  CAS  Google Scholar 

  25. Caglar M, Ilican S, Caglar Y, Yakuphanoglu F (2009) Appl Surf Sci 255:4491

    Article  CAS  Google Scholar 

  26. Arif B, Ali D (2016) J Mater Electron Devices 1:50–56

    Google Scholar 

  27. Rhoderick EH, Williams RH (1988) Metal-semiconductor contacts. Clarendon, Oxford

    Google Scholar 

  28. Norde H (1979) J Appl Phys 50:5052

    Article  CAS  Google Scholar 

  29. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Willey, New York

    Google Scholar 

  30. Ilhan M (2015) J Mater Electron Devices 1:15

    Google Scholar 

  31. Dere A (2015) J Mater Electron Devices 1:7

    Google Scholar 

  32. Yakuphanoglu F, Tugluoglu N, Karadeniz S. (2007) Phys B 392:188

    Article  CAS  Google Scholar 

  33. Al-Ghamdi AA, Gupta RK, Al-Turki Y, El-Tantawy F, Yakuphanoglu F (2015) J Mater Electron Devices: 11

  34. Gupta RK, Cavas M, Al-Ghamdi AA, Gafer ZH, El-Tantawy F, Yakuphanoglu F (2013) Solar Energy 92:1–6

    Article  CAS  Google Scholar 

  35. Lee JM, Shin JC, Hwang CS, Kim HJ, Vac J (1998) Sci Technol A 16:2768

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Kahramanmaraş Sütcü Imam University for financial support of the research program. (Project No:2015/3-90M). One of the authors thanks King Saud University for financial supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şükrü Karataş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karataş, Ş., El-Nasser, H.M., Al-Ghamdi, A.A. et al. High Photoresponsivity Ru-doped ZnO/p-Si Heterojunction Diodes by the Sol-gel Method. Silicon 10, 651–658 (2018). https://doi.org/10.1007/s12633-016-9508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9508-7

Keywords

Navigation