Skip to main content
Log in

Investigation of ZnO-P2O5 Glasses Containing Variable Bi2O3 Contents Through Combined Optical, Structural, Crystallization Analysis and Interactions with Gamma Rays

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Optical absorption spectra of prepared undoped zinc phosphate glass together with samples containing additional Bi2O3 (2.5, 5, 10, 15%) were measured within the range 200–1100 nm before and after gamma irradiation. The spectrum of the undoped glass reveals strong UV absorption which is related to the presence of trace ferric ions (Fe 3+) present as unaviodable impurities within theraw materials. Bi2O3-containing glasses show an additional broad band near the visible band centered at about 464 nm which is attributed to the absorption of Bi 3+ ions. Gamma irradiation is observed to cause extension of the UV absorption of the undoped and the sample containing low 2.5% Bi2O3. The broad visible band due to Bi 3+ is not affected by gamma irradiation indicating some shielding behavior due to the presence of heavy massive Bi 3+ ions. Infrared absorption spectra of the studied glasses reveal vibrational bands due mainly to metaphosphate groups which show interference with the vibrations due to the introduction of Bi–O bonding groups (as BiO6, BiO3 or P–O–Bi) specially with the increase of Bi2O3. The crystallization behavior is discussed in relation to the phase separation concept and ionic potential of the Zn 2+ ions together with the depolymerization effect of Bi2O3 to convert metaphosphate to pyrophospahte and the formation of a crystalline bismuth phosphate phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin S W (1991). Eur J Solid State Inorg Chem 28:163

    CAS  Google Scholar 

  2. Brow R K (2000). J Non-Cryst Solids 263 & 264:1

    Article  Google Scholar 

  3. Baskaran G S, Flower G L, Rao D K, Veeraiah N (2007). J Alloys Compd 431:303

    Article  CAS  Google Scholar 

  4. Day D E, Wu Z, Ray C S, Hrma P (1998). J Non-Cryst Solids 241:1

    Article  CAS  Google Scholar 

  5. Subbalakshmi P, Veeraiah N (2002). J Non-Cryst Solids 298:89

    Article  CAS  Google Scholar 

  6. Brow R K, Tallant D R, Myers S T, Phifer C C (1995). J Non-Cryst Solids 191:45

    Article  CAS  Google Scholar 

  7. Tošić MB, Nikolić JD, Grujić SR, živanović VD, Zildžović SN, Matijašević SD, ždrale SV (2013). J Non-Cryst Solids 362: 185

    Article  Google Scholar 

  8. Dimitrov V, Komatsu T (2013). J Non-Cryst Solids 382:18

    Article  CAS  Google Scholar 

  9. Simon S, Todea M (2006). J Non-Cryst Solids 352:2947

    Article  CAS  Google Scholar 

  10. Gowda V C V, Reddy C N, Radha K C, Anavekar R V, Etourneau J, Rao K J (2007). J Non-Cryst Solids 353:1150

    Article  CAS  Google Scholar 

  11. Eouadi B, Ouchetto M, Arbib E I H, Amraoui N (1988). Phase Transit 13:219

    Article  Google Scholar 

  12. Jirák J, Koudelka I, Pospíšil J, Mošner P, Montagne L, Delevoye L (2007). J Mater Sci 42:8592

    Article  Google Scholar 

  13. Vedeanu N, Cozar O, Stanescu R, Cozar I B, Ardelean I (2013). J Mol Struct 1044:323

    Article  CAS  Google Scholar 

  14. Miyaji F, Yoko T, Sakka S (1990). J Non-Cryst Solids 126:170

    Article  CAS  Google Scholar 

  15. Stehle C, Vira C, Vira D, Hogan D, Feller S, Affatigato M (1998). Phys Chem Glasses 39:83

    CAS  Google Scholar 

  16. Baia L, Stefan R, Kiefer W, Popp J, Simon S (2002). J Non-Cryst Solids 303:379

    Article  CAS  Google Scholar 

  17. ElBatal F H (2007). Nucl Instr Meth Phys Res (B) 254:243

    Article  CAS  Google Scholar 

  18. Marzouk M A, Abdelghany A M, ElBatal H A (2013). Phil Mag 93(19):2465

    Article  CAS  Google Scholar 

  19. Oprea I, Hesse H, Betzler K (2004). Opt Mater 26:235

    Article  CAS  Google Scholar 

  20. Cheng Y, Xiao H, Guo W, Guo W (2006). Thermochim Acta 444:173

    Article  CAS  Google Scholar 

  21. ElBatal F H, Marzouk S Y, Nada N, Desouky S M (2007). Phys B 391:88

    Article  CAS  Google Scholar 

  22. ElBatal F H, Abdelghany A M, ElBatal H A (2014). Spectrochim Acta (A) 122:461

    Article  CAS  Google Scholar 

  23. Sigel G H (1972). J Non-Cryst Solids 13:372

    Article  Google Scholar 

  24. Cook L, Mader K H (1982). J Am Ceram Soc 65:597

    Article  CAS  Google Scholar 

  25. Marzouk S Y, ElBatal F H (2006). Nucl Inst Meth Phys Res B 248:90

    Article  CAS  Google Scholar 

  26. Moncke D, Ehrt D (2004). Opt Mater 25:425

    Article  CAS  Google Scholar 

  27. Duffy J A (1997). Phys Chem Glasses 38:289

    CAS  Google Scholar 

  28. Bamford C R (1977) Color generation and control in glass, glass science and technology. Elsevier, Amsterdam

    Google Scholar 

  29. Paul A (1990) Chemistry of glasses, 2nd edn. New York

  30. Parke S, Webb R S (1973). J Phys Chem Solids 34:85

    Article  CAS  Google Scholar 

  31. Bishay A (1970). J Non-Cryst Solids 3:54

    Article  Google Scholar 

  32. Friebele EJ (1991) Radiation effects. In: Uhlmann DR, Kreidl NJ (eds) Optical properties of glass. American Ceramic Society, Westerville, pp 205–262

    Google Scholar 

  33. Znášik P, Jamnický M (1992). J Non-Cryst Solids 146:74

    Article  Google Scholar 

  34. Shih P Y, Yung S W, Chin T S (1998). J Non-Cryst Solids 224: 143

    Article  CAS  Google Scholar 

  35. Moustafa Y M, El-Egili K (1998). J Non-Cryst Solids 240:144

    Article  CAS  Google Scholar 

  36. ElBatal F H, Ouis M A, Morsi R M M, Marzouk S Y (2010). J Non-Cryst Solids 356:46

    Article  CAS  Google Scholar 

  37. Marzouk M A, ElBatal F H, Abdelghany A M (2013). Spectrochim Acta (A) 114:658

    Article  CAS  Google Scholar 

  38. Del Longo L, Ferrari M, Zanghellini E, Bettinelli M, Capobianco J A, Montagna M, Rossi F (1998). J Non-Cryst Solids 231:178

    Article  CAS  Google Scholar 

  39. Tarte P (1972) Physics of non-crystalline solids. Elsevier, Amsterdam, p 594

    Google Scholar 

  40. Condrate R (1972) Introduction to glass Science. Plenum Press, New York, p 101

    Book  Google Scholar 

  41. Tauc J (1979) Amorphous and liquid semiconductors. Plenum Press, New York, p 159

    Google Scholar 

  42. Mott N, Davis E (1979) Electronic process in non-crystalline materials, 2nd edn. Clarendon Press, Oxford, p 289

    Google Scholar 

  43. Gosain D P, Shimizu T, Ohmura M, Suzuki M, Bando T, Okano S (1991). J Mater Sci 26 (12):3271

    Article  CAS  Google Scholar 

  44. Bakr N A, Funde A M, Waman V S, Kamble M M, Hawaldar R R, Amalnerkar DP, Gosavi SW, Jadkar SR (2011). Pramana J Phys 76:519

    Article  CAS  Google Scholar 

  45. Barde RV, Nemade KR, Waghuley SA (2015) J Taibah Univ Sci, in press

  46. Al-Ghamdi A A (2006). Vacuum 80:400

    Article  CAS  Google Scholar 

  47. Goswami A (1996) Thin film fundamentals. New Age International(P), New Delhi

    Google Scholar 

  48. Sharma P, Katyal S C (2007). J Phys D: Appl Phys 2115:40

  49. Subbalakshmi P, Durga D K, Kumari B A, Srilatha K (2009). IOP Conf Ser: Mater Sci Eng 2:012023

    Article  Google Scholar 

  50. Marzouk M A, Fayad A M (2014). Appl Phys A Mater Sci Process 116:359

    Article  CAS  Google Scholar 

  51. Hudon P, Baker D R (2002). J Non-Cryst Solids 303:299

    Article  CAS  Google Scholar 

  52. McGahay V, Tomozawa M (1993). J Non-Cryst Solids 159(3): 246

    Article  CAS  Google Scholar 

  53. Crichton S N, Tomozawa M (1997). J Non-Cryst Solids 215:244

    Article  CAS  Google Scholar 

  54. McMillan PW (1979) Glass – ceramic, 2nd edn. Academic, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Marzouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzouk, M.A., ElBatal, F.H. & ElBatal, H.A. Investigation of ZnO-P2O5 Glasses Containing Variable Bi2O3 Contents Through Combined Optical, Structural, Crystallization Analysis and Interactions with Gamma Rays. Silicon 10, 615–625 (2018). https://doi.org/10.1007/s12633-016-9503-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9503-z

Keywords

Navigation