Skip to main content

Advertisement

Log in

Some Physical Features of Glasses Synthesized from Some Environmental Wastes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

New glasses based on wastes of limestone, phosphate, and cement kiln dust besides white sand were manufactured. The structure of the prepared glasses was studied by FTIR, thermal analysis, UV spectroscopy and ultrasonic techniques. The analysis revealed that increasing the content of SiO2 influences the concentrations of the structural units constituting the amorphous network. The values of the physical parameters; the density, ultrasonic velocity, the elastic moduli, the refractive index, the optical band gap and the glass transition temperature increase as the SiO2 content increases, which was attributed to the former role of SiO2 which strengthens the calcium borate network and the conversion of non-bridging oxygens into bridging oxygens. These factors increase the crosslink density and connectivity within the glass network and hence its rigidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saddeek Y, Mohamed GY, Shokry Hassan H, Mostafa AMA, Abd Elfadeel G (2015) Effect of gamma irradiation on the FTIR of cement kiln dust-bismuth borate glasses. J Non-Cryst Solids 419:110–117

    Article  CAS  Google Scholar 

  2. Saddeek Y, Shokry Hassan H, Abd Elfadeel G (2014) Fabrication and analysis of new bismuth borate glasses containing cement kiln dust. J Non-Cryst Solids 403:47–52

    Article  CAS  Google Scholar 

  3. Scarinci G, Brusatin G, Barbieri L, Corradi A, Lancellotti I, Colombo P, Hreglich S, Dall’Igna R (2000) Vitrification of industrial and natural wastes with production of glass fibers. J Eur Ceram Soc 20:2485–2490

    Article  CAS  Google Scholar 

  4. Hentati O, Abrantes N, Caetano AL, Bouguerra S, Gonçalves F, Römbke J, Pereira R (2015) Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. J Hazard Mater 294:80–89

    Article  CAS  Google Scholar 

  5. Singh S, Kumar A, Singh D, Thind KS, Mudahar GS (2008) Barium-borate-flyash glasses: As radiation shielding materials. Nucl Instrum Meth B 266:140–146

    Article  CAS  Google Scholar 

  6. Issa S, Mostafa A, Abd El-Salam L (2015) Radiological impacts of natural radioactivity in phosphate rocks from El-Sibaiya and Red Sea coast mines. J Radioanal Nucl Ch 303:53–61

    Article  CAS  Google Scholar 

  7. Duchesne J, Reardon EJ (1998) Waste Manag 18:339 – 350

    Article  CAS  Google Scholar 

  8. Cetin S, Marangoni M, Bernardo E (2015) Light weight glass-ceramic tiles from the sintering of mining tailings. Ceram Int 41:5294–5300

    Article  CAS  Google Scholar 

  9. Chinnam RK, Francis AA, Will J, Bernardo E, Boccaccini AR (2013) Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues. J Non-Cryst Solids 365:63–74

    Article  CAS  Google Scholar 

  10. Khater G, Morsi MM (2011) Glass-ceramics based on spodumene-enstatite system from natural raw materials. Thermochim Acta 519:6–11

    Article  CAS  Google Scholar 

  11. Colombo P, Brusatin G, Bernardo E, Scarinci G (2003) Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr Opin Solid St M 7:225–239

    Article  CAS  Google Scholar 

  12. Doweidar H, El-Damrawi G, Al-Zaibani M (2013) Distribution of species in Na2O-CaO-B2O3 glasses as probed by FTIR. Vib Spectrosc 68:91–95

    Article  CAS  Google Scholar 

  13. Mandlule A, Döhler F, Van Wüllen L, Kasuga T, Brauer DS (2014) Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J Non-Cryst Solids 392-393:31–38

    Article  CAS  Google Scholar 

  14. Ren M, Cai S, Zhang W, Liu T, Wu X, Xu P, Wang D (2013) Preparation and chemical stability of CaO-P2O5-Na2O-B2O3 porous glass ceramics. J Non-Cryst Solids 380:78–85

    Article  CAS  Google Scholar 

  15. Saddeek Y, Azooz M, Kenawy S (2005) Constants of elasticity of Li2O-B2O3-fly ash: Structural study by ultrasonic technique. Mater Chem Phys 94:213–220

    Article  CAS  Google Scholar 

  16. Saddeek Y (2009) Effect of B2O3 on the structure and properties of tungsten-tellurite glasses. Philos Mag B 89:41–54

    Article  CAS  Google Scholar 

  17. Doweidar H, Saddeek Y (2009) FTIR and ultrasonic investigations on modified bismuth borate glasses. J Non-Cryst Solids 355:348–354

    Article  CAS  Google Scholar 

  18. Aronne A, Depero LE, Sigaev VN, Pernice P, Bontempi E, Akimova OV, Fanelli E (2003) Structure and crystallization of potassium titanium phosphate glasses containing B2O3 and SiO2. J Non-Cryst Solids 324:208–219

    Article  CAS  Google Scholar 

  19. Pascuta P, Lungu R, Ardelean I (2010) FTIR and Raman spectroscopic investigation of some strontium-borate glasses doped with iron ions. J Mater Sci-Mater M 21:548–553

    Article  CAS  Google Scholar 

  20. Doweidar H, El-Damrawi G, Abdelghany M (2012) Structure and properties of CaF2-B2O3 glasses. J Mater Sci 47:4028–4035

    Article  CAS  Google Scholar 

  21. Baccaro S, Monika, Sharma G, Thind KS, Singh D, Cecillia A (2007) Analysis of structural modifications in −irradiated PbO-B2O3-SiO2 glasses by FTIR spectroscopy. Nucl Instrum Meth B 260:613–618

    Article  CAS  Google Scholar 

  22. Rada M, Rus L, Rada S, Culea E, Rusu T (2014) The network modifier and former role of the bismuth ions in the bismuth–lead-germanate glasses. Spectrochim Acta A 132:533–537

    Article  CAS  Google Scholar 

  23. Doweidar H, Saddeek Y (2010) Effect of La2O3 on the structure of lead borate glasses. J Non-Cryst Solids 356:1452–1457

    Article  CAS  Google Scholar 

  24. Goel A, McCloy J, Fox K, Leslie C, Riley B, Rodriguez C, Schweiger M (2012) Structural analysis of some sodium and alumina rich high-level nuclear waste glasses. J Non-Cryst Solids 358:674–679

    Article  CAS  Google Scholar 

  25. Vincent V, Nihoul G, Gavarri JR (1996) Ionic charge transfer in mixed compounds (Ca2 P 2O7)1−x-(Na4 P 2O7)x. Solid State Ionics 92:11–24

    Article  CAS  Google Scholar 

  26. Mansour E (2012) Semi-quantitative analysis for FTIR spectra of Al2O3-PbO-B2O3-SiO2 glasses. J Non-Cryst Solids 358:454–460

    Article  CAS  Google Scholar 

  27. Saddeek Y, Gaafar M, Bashier S (2010) Structural influence of PbO by means of FTIR and acoustics on calcium alumino-borosilicate glass system. J Non-Cryst Solids 356:1089–1095

    Article  CAS  Google Scholar 

  28. Plotnikov E, Stolyarova V (2005) Bond energies in glass forming oxide systems: calculated and experimental data. Phys Chem Glas 46([2]):187–189. Institute of Silicate Chemistry of the Russian Academy of Sciences, Russia

    CAS  Google Scholar 

  29. Dietzel A (1968) Glasstech Ber 22:41

    Google Scholar 

  30. Aly K, Hassaan M, Saddeek Y (2013) Thermal features and physical properties of sulfur modified barium vanadate glasses. Phase Transit 86:477–489

    Article  CAS  Google Scholar 

  31. Saddeek Y, Aly K, Bashier S (2010) Optical study of lead borosilicate glasses. Phys B 405:2407–2412

    Article  CAS  Google Scholar 

  32. Sushama D, Predeep P (2014) Thermal and Optical Studies of Rare Earth Doped Tungsten–Tellurite Glasses. Int J Appl Phys Math 4([2]):139–143

    Article  CAS  Google Scholar 

  33. Fox M (2001) Optical properties of solids, Oxford Master series in condensed matter physics. Oxford University Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser B. Saddeek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saddeek, Y.B., Aly, K.A., Shaaban, K.S. et al. Some Physical Features of Glasses Synthesized from Some Environmental Wastes. Silicon 10, 431–438 (2018). https://doi.org/10.1007/s12633-016-9470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9470-4

Keywords

Navigation