Skip to main content
Log in

Fabrication and Characterization of Glass and Glass-Ceramic from Cement Dust and Limestone Dust

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Recycling the solid wastes like cement dust and limestone dust and using in the manufacturing of glass and glass - ceramics are strongly needed. These glasses fabricated by melt-quench technique. The X-ray diffraction (XRD) patterns of all the studied samples confirmed the amorphous nature These glasses have been investigated for their physical properties using density and molar volume, structural properties using FTIR spectroscopy, optical properties using UV-Vis spectroscopy, thermal analysis and mechanical properties. The density, molar volume and refractive index vary with the concentration of CaO. The variations of various physical, structural, thermal analyses, mechanical and optical properties with the concentration of CaO in this glass system depict a strong structural influence of CaO. The ultrasonic velocity of these glasses has been decreased with addition of CaO, this decrease is connected to the decreasing the bonding strength between Calcium - oxygen are lower than the bond between silicon - oxygen (32-106 k cals).The elastic moduli of these glasses determined experimentally and calculated theoretically, according to Makishima–Mackenzie model decreased with increasing of CaO. This behavior may be related to changing the coordination number with an increasing of CaO and the decrease in the average force constant and crosslink density. The crystalline phase of the prepared glass ceramic is diopside with the chemical formula (Ca MgO6 Si) in all selected samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee CS, Matori KA, Sidek HJ, Aziz AB, Kamari HM, Ismail I, Zaid MHM (2017) Fabrication and characterization of glass and glass-ceramic from rice husk ash as a potent material for opto-electronic applications. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-017-7699-3

  2. El-Alaily NA, Abou Hussein EM, Ezz ElDin FM (2018) Chemical and optical degradation of some glass formulated from common municipal solid waste; decorated glass. Silicon. https://doi.org/10.1007/s12633-017-9717-8

  3. Bień J, Celary P, Wystalska K (2017) The problems in achieving sustainable development in the Tannery industry in regard to sewage sludge management. J Ecol Eng 18(6):13–20

    Article  Google Scholar 

  4. Kritikaki A, Zaharaki D, Komnitsas K (2016) Valorization of industrial wastes for the production of glass–ceramics 7:885–898. https://doi.org/10.1007/s12649-016-9480-x

  5. Soltan A, Taman Z, El-Kaliouby B (2011) Recycling of ornamental stones hazardous wastes. Nat Resour 2(4):244–249. https://doi.org/10.4236/nr.2011.24031

    CAS  Google Scholar 

  6. Saddeek YB, Aly KA, Farag RS, Uosif MAM, Shaaban KS (2016) Fabrication and physical characteristics of new glasses from wastes of limestone and phosphorite rocks. Bull Mater Sci 39(7):1791–1799. https://doi.org/10.1007/s12034-016-1334-4

    Article  CAS  Google Scholar 

  7. Shaaban KS, Saddeek YB, Aly KA, Dahshan A (2018) Synthesis and physical characteristics of new glasses from some environmental wastes. Silicon. https://doi.org/10.1007/s12633-018-9808-1

  8. Saddeek YB, Aly KA, Shaaban KS, Uosif MAM (2016) Farag RS, Some physical features of glasses synthesized from some environmental wastes. Silicon. https://doi.org/10.1007/s12633-016-9470-4, Verma KD

  9. Saddeek YB, Shaaban KS, Aly KA, Farag RS, Uosif MAM (2015) Studying effect of SiO2 on elastic properties of glasses based on environmental tailings using a nondestructive ultrasonic method. Int J New Hor Phys 2(2):53–57

    Google Scholar 

  10. Shaaban KS, Abo-naf SM, Abd Elnaeim AM, Hassouna MEM (2017) Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses. Appl Phys A 123: 457

    Article  CAS  Google Scholar 

  11. Saddeek YB, Hassan HS, Abd Elfadeel G (2014) Fabrication and analysis of new bismuth borate glasses containing cement kiln dust. J Non-Cryst Solids 403:47–52

    Article  CAS  Google Scholar 

  12. Saddeek YB, Mostafa AMA, Abd Elfadeel G (2017) Effect of cement kiln dust and gamma irradiation on the ultrasonic parameters of HMO borate glasses. Nucl Instrum Methods Phys Res Section B Beam Inter Mater Atoms 394. https://doi.org/10.1016/j.nimb.2016.12.041

  13. Saddeek YB, Mohamed GY, Hassan HS, Abd Elfadeel G (2015) FTIR Spectroscopic features of -ray influence on new cement kiln dust based glasses J Physica Scripta 90(2). https://doi.org/10.1088/0031-8949/90/8/085702

  14. Khater GA (2010) Glass-ceramics in the CaO–MgO–Al2 O 3–SiO2 system based on industrial waste materials. J Non-Cryst Solids 356:3066–3070

    Article  CAS  Google Scholar 

  15. Hammad AH, Abdelghany AM, ElBatal HA (2017) Thermal, structural, and morphological investigations of modified bismuth silicate glass-ceramics. Silicon 9(2):239–248

    Article  CAS  Google Scholar 

  16. Laopaiboon R, Bootjomchai C (2013) Influence of CeO2 on structural properties of glasses by using ultrasonic technique: Comparison between the local sand and SiO2. Ultrasonics 53:907–912

    Article  CAS  PubMed  Google Scholar 

  17. Makishima A, Mackenzie JD (1973) Direct calculation of young’s modulus. J Non-Cryst Solids 12:35–45

    Article  CAS  Google Scholar 

  18. Makishima A, Mackenzie JD (1975) Calculation of bulk modulus, shear modulus, and Poisson’s ratio. J Non-Cryst Solids 17:147–157

    Article  CAS  Google Scholar 

  19. Doweidar H, Saddeek YB (2009) FTIR and ultrasonic investigations on modified bismuth borate glasses. J Non-Cryst Solids 3:348–355

    Article  CAS  Google Scholar 

  20. Elkhoshkhany N, Khatab MA, Kabary MA (2017) Thermal, FTIR and UV spectral studies on tellurite glasses doped with cerium oxide. Ceram Int. https://doi.org/10.1016/j.ceramint.2017.11.019

  21. Iordanova R, Dimitrov V, Dimitriev Y, Klissurski D (1994) Glass formation and structure of glasses in the V2O5-MoO3-Bi2O3 system. J Non-Cryst Solids 180:58–65

    Article  CAS  Google Scholar 

  22. Shaaban KS, Saddeek YB, Aly KA (2018) Physical properties of Dy2O3 in Na2B4O7 - SiO2 - MoO3 glasses. Ceram Int 44:3862–3867

    Article  CAS  Google Scholar 

  23. ElBatal FH, Abdelghany AM, ElBatal HA (2014) Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation. Spectrochimica Acta (A) 122:461

    Article  CAS  Google Scholar 

  24. Kool A, Thakur P, Bagchi B, Sukhen NAH (2015) Mechanical, dielectric and photoluminescence properties of alumina–mullet composite derived from natural Ganges clay. J Appl Clay Sci 114:349–358

    Article  CAS  Google Scholar 

  25. Shaaban KS, Saddeek YB (2017) Effect of MoO3 content on structural, thermal, mechanical and optical properties of (B2O3-SiO2-Bi2O3-Na2O-Fe2O3) glass system. Silicon 9(5):785–793

    Article  CAS  Google Scholar 

  26. Varshneya AK (1994) Fundamental of inorganic glasses. Academic Press, New York

    Google Scholar 

  27. Saddeek Y, Abd El Latif L, Abd El Aal NS (2007) Interpretation of mechanical properties and structure of TeO2 –Li2O–B2O3 glasses. Physica B 348:475–480

    Article  CAS  Google Scholar 

  28. Soga N (1985) Elastic properties of clinopyroxene based glasses along diopside (CaMgSi2 O 6)-Jadeite (NaAlSi2 O 6). J Non-Cryst Solids 73:305

    Article  CAS  Google Scholar 

  29. El-Mallawany R, Afifi HA, El-Gazery M, Ali AA (2018) Effect of Bi2 O 3addition on the ultrasonic properties of pentaternary borate glasses. Measurement 116:314–317

    Article  Google Scholar 

  30. Aly KA (2009) Optical properties of Ge–Se–Te wedge-shaped films by using only transmission spectra. J Non-Cryst Solids 355:1489–1495

    Article  CAS  Google Scholar 

  31. Aly KA, Abousehly AM, Osman MA, Othman AA (2008) Structure, optical and electrical properties of Ge 30Sb 10Se 60 thin films. J Physica B: Cond Matter 403(10–11):1848– 1853

    Article  CAS  Google Scholar 

  32. Okasha A, Marzouk SY, Hammad AH, Abdelghany AM (2017) Optical character inquest of cobalt containing fluoroborate glass. Optik – Int J Light Electron Opt 142:125–133

    Article  CAS  Google Scholar 

  33. Mott NF, Davis EA (1977) Electronic processes in non-crystalline materials, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  34. Sushama D, Predeep P (2014) Thermal and optical studies of rare earth doped tungsten–tellurite glasses. Intentional J Appl Phys Math 4:139–143

    Article  CAS  Google Scholar 

  35. Ramadan RM, Abdelghany AM, ElBatal HA (2016) Gamma rays interactions with Bismuth phosphate glasses doped with 3d transition metal oxides. Silicon 8:313–324. https://doi.org/10.1007/s12633-016-9545-2

    Article  CAS  Google Scholar 

  36. Halimah MK, Chiew WH, Sidek HAA, Daud WM, Wahab ZA, Khamirul AM, Iskandar SM (2014) Optical properties of lithium borate glass (Li2O) x (B2O3)1-x (Sifat Optik Kaca Litium Borat). Sains Malaysiana 43(6):899–902

    CAS  Google Scholar 

  37. Thompson RM, Downs RT (2008) The crystal structure of diopside at pressure to 10 GPa locality: DeKalb, New York Sample: P = 2.32 GPa. Am Mineralogist 93:177–186

    Article  CAS  Google Scholar 

  38. Wu C, Ramaswamy Y, Zreiqat H (2010) Porous diopside (CaMgSi2 O 6) scaffold: a promising bioactive material for bone tissue engineering. Acta Biomater 6:2237–2245

    Article  CAS  PubMed  Google Scholar 

  39. Wu C, Chang J (2013) A review of bioactive silicate ceramics. Biomed Mater 8:032001. https://doi.org/10.1088/1748-6041/8/3/032001

    Article  CAS  PubMed  Google Scholar 

  40. Carter S, Ponton CB, Rawlings RD, Rogers PS (1988) Microstructure, chemistry, elastic properties and internal-friction of silceram glass-ceramics. J Mater Sci 23:2622–2630

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (prof. Atif Mossad Ali) extend his appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 2/8/38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. S. Shaaban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, K.H.S., Saddeek, Y.B., Aly, K.A. et al. Fabrication and Characterization of Glass and Glass-Ceramic from Cement Dust and Limestone Dust. Silicon 11, 807–815 (2019). https://doi.org/10.1007/s12633-018-9964-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9964-3

Keywords

Navigation