Skip to main content
Log in

Prevention of hypotension after induction of general anesthesia using point-of-care ultrasound to guide fluid management: a randomized controlled trial

Prévention de l’hypotension après l’induction d’une anesthésie générale à l’aide d’une échographie ciblée pour guider la gestion liquidienne : une étude randomisée contrôlée

  • Reports of Original Investigations
  • Published:
Canadian Journal of Anesthesia/Journal canadien d'anesthésie Aims and scope Submit manuscript

Abstract

Purpose

Hypotension after induction of general anesthesia (GAIH) is common and is associated with postoperative complications including increased mortality. Collapsibility of the inferior vena cava (IVC) has good performance in predicting GAIH; however, there is limited evidence whether a preoperative fluid bolus in patients with a collapsible IVC can prevent this drop in blood pressure.

Methods

We conducted a single-centre randomized controlled trial with adult patients scheduled to undergo elective noncardiac surgery under general anesthesia (GA). Patients underwent a preoperative point-of-care ultrasound scan (POCUS) to identify those with a collapsible IVC (IVC collapsibility index ≥ 43%). Individuals with a collapsible IVC were randomized to receive a preoperative 500 mL fluid bolus or routine care (control group). Surgical and anesthesia teams were blinded to the results of the scan and group allocation. Hypotension after induction of GA was defined as the use of vasopressors/inotropes or a decrease in mean arterial pressure < 65 mm Hg or > 25% from baseline within 20 min of induction of GA.

Results

Forty patients (20 in each group) were included. The rate of hypotension after induction of GA was significantly reduced in those receiving preoperative fluids (9/20, 45% vs 17/20, 85%; relative risk, 0.53; 95% confidence interval, 0.32 to 0.89; P = 0.02). The mean (standard deviation) time to complete POCUS was 4 (2) min, and the duration of fluid bolus administration was 14 (5) min. Neither surgical delays nor adverse events occurred as a result of the study intervention.

Conclusion

A preoperative fluid bolus in patients with a collapsible IVC reduced the incidence of GAIH without associated adverse effects.

Study registration

ClinicalTrials.gov (NCT05424510); first submitted 15 June 2022.

Résumé

Objectif

L’hypotension après induction de l’anesthésie générale (AG) est fréquente et est associée à des complications postopératoires, notamment à une augmentation de la mortalité. La collapsibilité de la veine cave inférieure (VCI) a été utilisée avec succès pour prédire la l’hypotension post-induction de l’AG; cependant, il existe peu de données probantes qu’un bolus liquidien préopératoire chez les patient·es présentant une collapsibilité de la VCI puisse prévenir cette baisse de la tension artérielle.

Méthode

Nous avons réalisé une étude randomisée contrôlée monocentrique auprès de patient·es adultes devant bénéficier d’une chirurgie non cardiaque non urgente sous anesthésie générale. Les patient·es ont passé une échographie préopératoire ciblée (POCUS) pour identifier les personnes présentant une collapsibilité de la VCI (indice de collapsibilité de la VCI ≥ 43 %). Les personnes présentant une collapsibilité de la VCI ont été randomisées à recevoir un bolus de liquide préopératoire de 500 mL ou des soins de routine (groupe témoin). Les équipes chirurgicales et d’anesthésie ne connaissaient pas les résultats de l’examen ni l’attribution des groupes. L’hypotension après induction de l’AG a été définie comme l’utilisation de vasopresseurs/inotropes ou une diminution de la tension artérielle moyenne < 65 mm Hg ou > 25 % par rapport aux valeurs de base dans les 20 minutes suivant l’induction de l’AG.

Résultats

Quarante patient·es (20 dans chaque groupe) ont été inclus·es. Le taux d’hypotension après induction de l’AG était significativement réduit chez les personnes recevant des liquides préopératoires (9/20, 45 % vs 17/20, 85 %; risque relatif, 0,53; intervalle de confiance à 95 %, 0,32 à 0,89; P = 0,02). Le temps moyen (écart type) pour compléter l’échographie ciblée était de 4 (2) min, et la durée de l’administration du bolus liquidien était de 14 (5) min. Ni retards chirurgicaux ni effets indésirables ne sont survenus à la suite de l’intervention à l’étude.

Conclusion

Un bolus liquidien préopératoire chez les patient·es présentant une collapsibilité de la VCI a réduit l’incidence d’hypotension après l’induction de l’anesthésie générale sans effets indésirables associés.

Enregistrement de l’étude

ClinicalTrials.gov (NCT05424510); première soumission le 15 juin 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bijker JB, van Klei WA, Kappen TH, van Wolfswinkel L, Moons KG, Kalkman CJ. Incidence of intraoperative hypotension as a function of the chosen definition: literature definitions applied to a retrospective cohort using automated data collection. Anesthesiology 2007; 107: 213–20. https://doi.org/10.1097/01.anes.0000270724.40897.8e

    Article  PubMed  Google Scholar 

  2. Sessler DI, Meyhoff CS, Zimmerman NM, et al. Period-dependent associations between hypotension during and for four days after noncardiac surgery and a composite of myocardial infarction and death: a substudy of the POISE-2 trial. Anesthesiology 2018; 128: 317–27. https://doi.org/10.1097/aln.0000000000001985

    Article  PubMed  Google Scholar 

  3. Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg 2005; 100: 4–10. https://doi.org/10.1213/01.ane.0000147519.82841.5e

    Article  PubMed  Google Scholar 

  4. Walsh M, Devereaux PJ, Garg AX, et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 2013; 119: 507–15. https://doi.org/10.1097/aln.0b013e3182a10e26

    Article  PubMed  Google Scholar 

  5. Salmasi V, Maheshwari K, Yang D, et al. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology 2017; 126: 47–65. https://doi.org/10.1097/aln.0000000000001432

    Article  PubMed  Google Scholar 

  6. Chen B, Pang QY, An R, Liu HL. A systematic review of risk factors for postinduction hypotension in surgical patients undergoing general anesthesia. Eur Rev Med Pharmacol Sci 2021; 25: 7044–50. https://doi.org/10.26355/eurrev_202111_27255

  7. Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiology 2008; 108: 735–48. https://doi.org/10.1097/aln.0b013e3181672607

    Article  PubMed  Google Scholar 

  8. Wolff CB, Green DW. Clarification of the circulatory patho-physiology of anaesthesia—implications for high-risk surgical patients. Int J Surg 2014; 12: 1348–56. https://doi.org/10.1016/j.ijsu.2014.10.034

    Article  PubMed  Google Scholar 

  9. Seif D, Perera P, Mandavia D. Caval sonography in shock: a noninvasive method for evaluating intravascular volume in critically ill patients. J Ultrasound Med 2012; 31: 1885–90. https://doi.org/10.7863/jum.2012.31.12.1885

    Article  PubMed  Google Scholar 

  10. Nakamura K, Tomida M, Ando T, et al. Cardiac variation of inferior vena cava: new concept in the evaluation of intravascular blood volume. J Med Ultrason 2013; 40: 205–9. https://doi.org/10.1007/s10396-013-0435-6

    Article  CAS  Google Scholar 

  11. Brennan JM, Ronan A, Goonewardena S, et al. Handcarried ultrasound measurement of the inferior vena cava for assessment of intravascular volume status in the outpatient hemodialysis clinic. Clin J Am Soc Nephrol 2006; 1: 749–53. https://doi.org/10.2215/cjn.00310106

    Article  PubMed  Google Scholar 

  12. Zhang J, Critchley LA. Inferior vena cava ultrasonography before general anesthesia can predict hypotension after induction. Anesthesiology 2016; 124: 580–9. https://doi.org/10.1097/aln.0000000000001002

    Article  CAS  PubMed  Google Scholar 

  13. Purushothaman SS, Alex A, Kesavan R, Balakrishnan S, Rajan S, Kumar L. Ultrasound measurement of inferior vena cava collapsibility as a tool to predict propofol-induced hypotension. Anesth Essays Res 2020; 14: 199–202. https://doi.org/10.4103/aer.aer_75_20

    Article  PubMed  PubMed Central  Google Scholar 

  14. Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 2004; 30: 1834–7. https://doi.org/10.1007/s00134-004-2233-5

    Article  PubMed  Google Scholar 

  15. Caplan M, Durand A, Bortolotti P, et al. Measurement site of inferior vena cava diameter affects the accuracy with which fluid responsiveness can be predicted in spontaneously breathing patients: a post hoc analysis of two prospective cohorts. Ann Intensive Care 2020; 10: 168. https://doi.org/10.1186/s13613-020-00786-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kent A, Bahner DP, Boulger CT, et al. Sonographic evaluation of intravascular volume status in the surgical intensive care unit: a prospective comparison of subclavian vein and inferior vena cava collapsibility index. J Surg Res 2013; 184: 561–6. https://doi.org/10.1016/j.jss.2013.05.040

    Article  PubMed  Google Scholar 

  17. Au AK, Steinberg D, Thom C, et al. Ultrasound measurement of inferior vena cava collapse predicts propofol-induced hypotension. Am J Emerg Med 2016; 34: 1125–8. https://doi.org/10.1016/j.ajem.2016.03.058

    Article  PubMed  Google Scholar 

  18. Haldane JB. The mean and variance of χ2 when used as a test of homogeneity, when expectations are small. Biometrika 1940; 31: 346–55. https://doi.org/10.2307/2332614

    Article  MathSciNet  Google Scholar 

  19. Monk TG, Bronsert MR, Henderson WG, et al. Association between intraoperative hypotension and hypertension and 30-day postoperative mortality in noncardiac surgery. Anesthesiology 2015; 123: 307–19. https://doi.org/10.1097/aln.0000000000000756

    Article  PubMed  Google Scholar 

  20. Saugel B, Bebert EJ, Briesenick L, et al. Mechanisms contributing to hypotension after anesthetic induction with sufentanil, propofol, and rocuronium: a prospective observational study. J Clin Monit Comput 2022; 36: 341–7. https://doi.org/10.1007/s10877-021-00653-9

    Article  PubMed  Google Scholar 

  21. Bhimsaria SK, Bidkar PU, Dey A, et al. Clinical utility of ultrasonography, pulse oximetry and arterial line derived hemodynamic parameters for predicting post-induction hypotension in patients undergoing elective craniotomy for excision of brain tumors—a prospective observational study. Heliyon 2022; 8: e11208. https://doi.org/10.1016/j.heliyon.2022.e11208

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ackland GL, Singh-Ranger D, Fox S, et al. Assessment of preoperative fluid depletion using bioimpedance analysis. Br J Anaesth 2004; 92: 134–6. https://doi.org/10.1093/bja/aeh015

    Article  CAS  PubMed  Google Scholar 

  23. Bundgaard-Nielsen M, Jørgensen CC, Secher NH, Kehlet H. Functional intravascular volume deficit in patients before surgery. Acta Anaesthesiol Scand 2010; 54: 464–9. https://doi.org/10.1111/j.1399-6576.2009.02175.x

    Article  CAS  PubMed  Google Scholar 

  24. American Society of Anesthesiologists. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: an updated report by the American Society of Anesthesiologists Task Force on preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration. Anesthesiology 2017; 126: 376–93. https://doi.org/10.1097/aln.0000000000001452

    Article  Google Scholar 

  25. Simpao AF, Wu L, Nelson O, et al. Preoperative fluid fasting times and postinduction low blood pressure in children. Anesthesiology 2020; 133: 523–33. https://doi.org/10.1097/aln.0000000000003343

    Article  CAS  PubMed  Google Scholar 

  26. Frykholm P, Disma N, Andersson H, et al. Pre-operative fasting in children: a guideline from the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol 2022; 39: 4–25. https://doi.org/10.1097/eja.0000000000001599

    Article  PubMed  Google Scholar 

  27. Myrberg T, Lindelöf L, Hultin M. Effect of preoperative fluid therapy on hemodynamic stability during anesthesia induction, a randomized study. Acta Anaesthesiol Scand 2019; 63: 1129–36. https://doi.org/10.1111/aas.13419

    Article  CAS  PubMed  Google Scholar 

  28. Paul A, Sriganesh K, Chakrabarti D, Reddy KR. Effect of preanesthetic fluid loading on postinduction hypotension and advanced cardiac parameters in patients with chronic compressive cervical myelopathy: a randomized controlled trial. J Neurosci Rural Pract 2022; 13: 462–70. https://doi.org/10.1055/s-0042-1749459

    Article  PubMed  PubMed Central  Google Scholar 

  29. Holte K, Sharrock NE, Kehlet H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth 2002; 89: 622–32. https://doi.org/10.1093/bja/aef220

    Article  CAS  PubMed  Google Scholar 

  30. Holte K, Kehlet H. Fluid therapy and surgical outcomes in elective surgery: a need for reassessment in fast-track surgery. J Am Coll Surg 2006; 202: 971–89. https://doi.org/10.1016/j.jamcollsurg.2006.01.003

    Article  PubMed  Google Scholar 

  31. Marjanovic G, Villain C, Juettner E, et al. Impact of different crystalloid volume regimes on intestinal anastomotic stability. Ann Surg 2009; 249: 181–5. https://doi.org/10.1097/sla.0b013e31818b73dc

    Article  PubMed  Google Scholar 

  32. Kulemann B, Timme S, Seifert G, et al. Intraoperative crystalloid overload leads to substantial inflammatory infiltration of intestinal anastomoses—a histomorphological analysis. Surgery 2013; 154: 596–603. https://doi.org/10.1016/j.surg.2013.04.010

    Article  PubMed  Google Scholar 

  33. Pang Q, Liu H, Chen B, Jiang Y. Restrictive and liberal fluid administration in major abdominal surgery. Saudi Med J 2017; 38: 123–31. https://doi.org/10.15537/smj.2017.2.15077

  34. Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einav S, Matot I. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 2005; 103: 25–32. https://doi.org/10.1097/00000542-200507000-00008

    Article  PubMed  Google Scholar 

  35. Brandstrup B, Tønnesen H, Beier-Holgersen R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 2003; 238: 641–8. https://doi.org/10.1097/01.sla.0000094387.50865.23

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology 2008; 109: 723–40. https://doi.org/10.1097/aln.0b013e3181863117

    Article  PubMed  Google Scholar 

  37. Ceruti S, Anselmi L, Minotti B, et al. Prevention of arterial hypotension after spinal anaesthesia using vena cava ultrasound to guide fluid management. Br J Anaesth 2018; 120: 101–8. https://doi.org/10.1016/j.bja.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  38. Kimori K, Tamura Y. Feasibility of using a pocket-sized ultrasound device to measure the inferior vena cava diameter of patients with heart failure in the community setting: a pilot study. J Prim Care Community Health 2020; 11: https://doi.org/10.1177/2150132720931345

  39. Beaubien-Souligny W, Rola P, Haycock K, et al. Quantifying systemic congestion with point-of-care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J 2020; 12: 16. https://doi.org/10.1186/s13089-020-00163-w

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

Elad Dana contributed to the conceptualization and design of the manuscript, methodology, acquisition, data curation and interpretation, and drafting the article. Cristian Arzola helped with the study conception and design, validation, writing, reviewing, editing, and administration. James Khan contributed to the study conceptualization and design, methodology, writing, reviewing, and editing.

Disclosures

None.

Funding statement

None.

Editorial responsibility

This submission was handled by Dr. Philip M. Jones, Deputy Editor-in-Chief, Canadian Journal of Anesthesia/Journal canadien d’anesthésie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elad Dana MD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is accompanied by an Editorial. Please see Can J Anesth 2024; https://doi.org/10.1007/s12630-024-02747-9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dana, E., Arzola, C. & Khan, J.S. Prevention of hypotension after induction of general anesthesia using point-of-care ultrasound to guide fluid management: a randomized controlled trial. Can J Anesth/J Can Anesth (2024). https://doi.org/10.1007/s12630-024-02748-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12630-024-02748-8

Keywords

Navigation