Skip to main content
Log in

Process and Kinetics of Preparing Ammonium Molybdate from Molybdenum Concentrate by Microwave Roasting-Ammonia Leaching

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

On the basis of previous work, this paper systematically investigates the influence parameters and leaching kinetics of the ammonia leaching process of molybdenum calcine obtained by microwave roasting. The conditions of the ammonia leaching process of calcined molybdenum were optimized by changing the parameters of ammonia concentration, solid–liquid ratio, and leaching temperature. The results show that, when the concentration of ammonia was 25%, the mass of calcined molybdenum and the volume of ammonia were 1/2 g/ml, the leaching temperature was 75°C, and the leaching time was 60 min, the leaching efficiency of molybdenum can reach 91.74%, and the content of ammonium molybdate in the leaching product was 97.23 wt.%. In the leaching process, MoO3 in the solid phase is dissolved by ammonia to form ammonium molybdate, which conforms to the shrinking core model. The activation energy of the reaction is 57.8 kJ/mol and the rate control step is determined by the mixed model of chemical reaction and product layer diffusion. The apparent rate equation is expressed as: \(\frac{1}{3}\ln \left( {1 - x} \right) + \left( {1 - x} \right)^{{ - \frac{1}{3}}} - 1 = 14.97\omega_{{{\text{ammonia}}}}^{2.004} (L/S)^{ - 2.44} e^{{\frac{ - 57800}{{{\text{RT}}}}}} t\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. He, J. Liu, J.-H. Liu, C.-L. Chen, and C.-L. Zhuang, Int. J. Miner. Metall. Mater. 28, 221 https://doi.org/10.1007/s12613-020-2037-9 (2020).

    Article  Google Scholar 

  2. M. Pervaiz, A. Munawar, S. Hussain, Z. Saeed, S. Hussain, U. Younas, F. Ali, A. Zaidi, S.M. Bukhari, M. Iqbal, A. Rashid, A. Adnan, and A. Nazir, Pol. J. Environ. Stud. 30, 1771 https://doi.org/10.15244/pjoes/124113 (2021).

    Article  Google Scholar 

  3. J. Zhang, Y.H. Guo, W.W. Lu, X.M. Guo, M.C. Xu, and H.B. Guo, J. Ind. Eng. Chem. 18, 1824 https://doi.org/10.1016/j.jiec.2012.04.013 (2012).

    Article  Google Scholar 

  4. L. Hui and L.X.J.C.M.I. Tang, (2009).

  5. H.K. Feng, Z.Y. Cai, Y.G. Li and Y.F. Qi, In 3rd International Conference on Materials and Products Manufacturing Technology (ICMPMT 2013), (Guangzhou, PEOPLES R CHINA, 2013), pp. 401–406.

  6. G.Q. Zhang, Q. Wang, W.J. Guan, L. Zeng, Q.G. Li, Z.Y. Cao, L.S. Xiao, and Q. Zhou, Sep. Purif. Technol. 209, 676 https://doi.org/10.1016/j.seppur.2018.09.015 (2019).

    Article  Google Scholar 

  7. Q.W. Qin, Z.W. Liu, T.J. Chen, Z.L. Huang, J.H. Yang and W. Han, In 4th Symposium on Rare Metal Extraction and Processing, (San Diego, CA), pp. 265–275.

  8. S. Kan, K. Benzesik, O.C. Odabas, and O. Yucel, Min. Metall. Explor. 38, 1597 https://doi.org/10.1007/s42461-021-00429-4 (2021).

    Article  Google Scholar 

  9. Y.Q. Ma, S. Stopic, B. Xakalashe, S. Ndlovu, K. Forsberg, and B. Friedrich, Hydrometallurgy 206, 105754 https://doi.org/10.1016/j.hydromet.2021.105754 (2021).

    Article  Google Scholar 

  10. Y.R. Wu, R.Y. Mu, G.H. Li, M.G. Li, and W.Q. Lv, Compr. Rev. Food Sci. Food Saf. 21, 3436 https://doi.org/10.1111/1541-4337.12978 (2022).

    Article  Google Scholar 

  11. S.D. Lin, L. Gao, Y. Yang, J. Chen, S.H. Guo, M. Omran, and G. Chen, Hydrometallurgy 198, 105519 https://doi.org/10.1016/j.hydromet.2020.105519 (2020).

    Article  Google Scholar 

  12. H. Goyal, S. Sadula, and D.G. Vlachos, Chem. Eng. J. 417, 127892 https://doi.org/10.1016/j.cej.2020.127892 (2021).

    Article  Google Scholar 

  13. M.P. Zhang, C.H. Liu, X.J. Zhu, H.B. Xiong, L.B. Zhang, J.Y. Gao, and M.H. Liu, Chem. Eng. Process. Process Intensif. 167, 108550 https://doi.org/10.1016/j.cep.2021.108550 (2021).

    Article  Google Scholar 

  14. M. Vosough, G.R. Khayati, and S. Sharafi, Chem. Pap. 76, 3227 https://doi.org/10.1007/s11696-022-02098-z (2022).

    Article  Google Scholar 

  15. Q.S. Zhou, W.T. Yun, J.T. Xi, X.B. Li, T.G. Qi, G.H. Liu, and Z.H. Peng, Trans. Nonferrous Metals Soc. China 27, 1618 https://doi.org/10.1016/s1003-6326(17)60184-5 (2017).

    Article  Google Scholar 

  16. P. Wang, Y.J. Pan, X. Sun, and Y.Q. Zhang, Sn Appl. Sci. 1, 311 https://doi.org/10.1007/s42452-019-0326-6 (2019).

    Article  Google Scholar 

  17. M.P. Zhang, C.H. Liu, X.J. Zhu, H.B. Xiong, L.B. Zhang, J.Y. Gao, and M.H. Liu, Chem. Eng. Process. 167, 13 https://doi.org/10.1016/j.cep.2021.108550 (2021).

    Article  Google Scholar 

  18. H.K. Di, D.C. Liu, K. Yang, and L.B. Zhang, Hydrometallurgy 213, 105840 https://doi.org/10.1016/j.hydromet.2022.105931 (2022).

    Article  Google Scholar 

  19. W.F. Gao, J.L. Song, H.B. Cao, X. Lin, X.H. Zhang, X.H. Zheng, Y. Zhang, and Z. Sun, J. Clean. Prod. 178, 833 https://doi.org/10.1016/j.jclepro.2018.01.040 (2018).

    Article  Google Scholar 

  20. F. Faraji, A. Alizadeh, F. Rashchi, and N. Mostoufi, Rev. Chem. Eng. 38, 113 https://doi.org/10.1515/revce-2019-0073 (2022).

    Article  Google Scholar 

  21. L.T. Song, H.K. Di, M. Liang, K. Yang, and L.B. Zhang, Chem. Eng. Process. Process Intensif. 178, 109045 https://doi.org/10.1016/j.cep.2022.109045 (2022).

    Article  Google Scholar 

  22. B.C. Tanda, J.J. Eksteen, and E.A. Oraby, Hydrometallurgy 178, 264 https://doi.org/10.1016/j.hydromet.2018.05.005 (2018).

    Article  Google Scholar 

  23. S.L. Bai, S. Chen, L.Y. Chen, K.W. Zhang, R.X. Luo, D.Q. Li, and C.C. Liu, Sens. Actuators B-Chem. 174, 51 https://doi.org/10.1016/j.snb.2012.08.015 (2012).

    Article  Google Scholar 

  24. K. He, S.H. He, W. Yang, and Q.F. Tian, J. Alloys Compd. 808, 151704 https://doi.org/10.1016/j.jallcom.2019.151704 (2019).

    Article  Google Scholar 

  25. S.Q. Wang, J. Xie, J.D. Hu, H.Y. Qin, and Y.L. Cao, Appl. Surf. Sci. 512, 145722 https://doi.org/10.1016/j.apsusc.2020.145722 (2020).

    Article  Google Scholar 

  26. Z.Y. Chen, G.H. Ye, P.Z. Xiang, Y.Y. Tao, Y. Tang, and Y.J. Hu, Sep. Purif. Technol. 281, 119937 https://doi.org/10.1016/j.seppur.2021.119937 (2022).

    Article  Google Scholar 

  27. G. Chen, C.L. Jiang, R.L. Liu, Z.M. Xie, Z.H. Liu, S.D. Cen, C.Y. Tao, and S.H. Guo, Sep. Purif. Technol. 277, 119472 https://doi.org/10.1016/j.seppur.2021.119472 (2021).

    Article  Google Scholar 

  28. I.F. Barton, and J.B. Hiskey, Hydrometallurgy 207, 105775 https://doi.org/10.1016/j.hydromet.2021.105775 (2022).

    Article  Google Scholar 

  29. H.J. Du, D. Wang, L.P. Zhang, W.T. Li, Z. Wang, W.H. Xiao, and C.L. Ye, Hydrometallurgy 213, 105942 https://doi.org/10.1016/j.hydromet.2022.105942 (2022).

    Article  Google Scholar 

  30. F. He, B.Z. Ma, C.Y. Wang, Y. Zuo, and Y.Q. Chen, Miner. Eng. 185, 107671 https://doi.org/10.1016/j.mineng.2022.107671 (2022).

    Article  Google Scholar 

  31. Q.H. Gui, M.I. Khan, S.X. Wang, and L.B. Zhang, Hydrometallurgy 196, 105426 https://doi.org/10.1016/j.hydromet.2020.105426 (2020).

    Article  Google Scholar 

  32. N.T. Hung, L.B. Thuan, T.C. Thanh, M. Watanabe, H. Nhuan, D.V. Khoai, N.T. Thuy, N.V. Tung, N. Aoyagi, D.T.T. Tra, N.T. Minh, M.K. Jha, J.Y. Lee, and R.K. Jyothi, Hydrometallurgy 191, 105195 https://doi.org/10.1016/j.hydromet.2019.105195 (2020).

    Article  Google Scholar 

  33. X.H. Liu, J.H. Huang, Z.W. Zhao, X.Y. Chen, J.T. Li, L.H. He, and F.L. Sun, Hydrometallurgy 215, 105987 https://doi.org/10.1016/j.hydromet.2022.105987 (2023).

    Article  Google Scholar 

  34. W. Ding, S.X. Bao, Y.M. Zhang, and J.H. Xiao, Miner. Eng. 183, 107624 https://doi.org/10.1016/j.mineng.2022.107624 (2022).

    Article  Google Scholar 

  35. W.H. Xiao, Y.L. Li, Z.W. Zhao, and X.H. Liu, Sep. Purif. Technol. 276, 119375 https://doi.org/10.1016/j.seppur.2021.119375 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from the National Natural Science Foundation of China (No. 51964046), and Yunnan Province Ten Thousand Youth Program Top Talents (No. YNWR-QNBJ-2019-066).

Author information

Authors and Affiliations

Authors

Contributions

Fengjuan Zhang: Writing–review & editing, Data curation. Qian Wang: Formal analysis, Validation. Chenhui Liu: Supervision, Project administration, Resources. Mei Wei: Software, Validation. Fang Wang, Jiyun Gao: Conceptualization, Validation, Resources. C. Srinivasakannan: Formal analysis, Investigation, Conceptualization.

Corresponding authors

Correspondence to Chenhui Liu or Chandrasekar Srinivasakannan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Wang, Q., Liu, C. et al. Process and Kinetics of Preparing Ammonium Molybdate from Molybdenum Concentrate by Microwave Roasting-Ammonia Leaching. JOM (2024). https://doi.org/10.1007/s11837-024-06571-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06571-w

Navigation