Skip to main content
Log in

Effect of surface damage induced by cavitation erosion on pitting and passive behaviors of 304L stainless steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The corrosion behavior of 304L stainless steel (SS) in 3.5wt% NaCl solution after different cavitation erosion (CE) times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques. It was found that the antagonism effect resulting in the passivation and depassivation of 304L SS had significant distinctions at different CE periods. The passive behavior was predominant during the incubation period of CE where the metastable pitting initiated at the surface of 304L SS. Over the rising period of CE, the 304L SS experienced a transition from passivation to depassivation, leading to the massive growth of metastable pitting and stable pitting. The depassivation of 304L SS was found to be dominant at the stable period of CE where serious localized corrosion occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Zhang, X.Y. Chen, Y.F. Gong, Y. Tian, A. McDonald, and H. Li, In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings, Ultrason. Sonochem., 60(2020), art. No. 104760.

  2. Y.X. Qiao, J. Chen, H.L. Zhou, et al., Effect of solution treatment on cavitation erosion behavior of high-nitrogen austenitic stainless steel, Wear, 424–425(2019), p. 70.

    Article  Google Scholar 

  3. X.W. Luo, B. Ji, and Y. Tsujimoto, A review of cavitation in hydraulic machinery, J. Hydrodyn., 28(2016), No. 3, p. 335.

    Article  Google Scholar 

  4. S. Hong, Y.P. Wu, J.F. Zhang, Y.G. Zheng, Y. Zheng, and J.R. Lin, Synergistic effect of ultrasonic cavitation erosion and corrosion of WC−CoCr and FeCrSiBMn coatings prepared by HVOF spraying, Ultrason. Sonochem., 31(2016), p. 563.

    Article  CAS  Google Scholar 

  5. K. Selvam, P. Mandal, H.S. Grewal, and H.S. Arora, Ultrasonic cavitation erosion–corrosion behavior of friction stir processed stainless steel, Ultrason. Sonochem., 44(2018), p. 331.

    Article  CAS  Google Scholar 

  6. Y.X. Qiao, Z.H. Tian, X. Cai, et al., Cavitation erosion behaviors of a nickel-free high-nitrogen stainless steel, Tribol. Lett., 67(2019), No. 1, p. 1.

    Article  CAS  Google Scholar 

  7. M. Sabzi, S.M. Far, and S.M. Dezfuli, Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1431.

    Article  CAS  Google Scholar 

  8. S.M. Anijdan, G. Arab, M. Sabzi, M. Sadeghi, A.R. Eivani, and H.R. Jafarian, Sensitivity to hydrogen induced cracking, and corrosion performance of an API X65 pipeline steel in H2S containing environment: Influence of heat treatment and its subsequent microstructural changes, J. Mater. Res. Technol., 15(2021), p. 1.

    Article  Google Scholar 

  9. M. Sabzi, S.M. Dezfuli, and Z. Balak, Crystalline texture evolution, control of the tribocorrosion behavior, and significant enhancement of the abrasion properties of a Ni−P nanocomposite coating enhanced by zirconia nanoparticles, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 1020.

    Article  CAS  Google Scholar 

  10. M. Sabzi, S. Mersagh Dezfuli, M. Asadian, A. Tafi, and A. Mahaab, Study of the effect of temperature on corrosion behavior of galvanized steel in seawater environment by using potentiodynamic polarization and EIS methods, Mater. Res. Express, 6(2019), No. 7, art. No. 076508.

  11. Y.X. Qiao, X.Y. Wang, L.L. Yang, et al., Effect of aging treatment on microstructure and corrosion behavior of a Fe−18Cr−15Mn−0.66N stainless steel, J. Mater. Sci. Technol., 107(2022), p. 197.

    Article  Google Scholar 

  12. Y.W. Tang, N.W. Dai, J. Wu, Y.M. Jiang, and J. Li, Effect of surface roughness on pitting corrosion of 2205 duplex stainless steel investigated by electrochemical noise measurements, Materials, 12(2019), No. 5, art. No. 738.

  13. T. Zhang, Y.W. Shao, G.Z. Meng, and F.H. Wang, Electrochemical noise analysis of the corrosion of AZ91D magnesium alloy in alkaline chloride solution, Electrochim. Acta, 53(2007), No. 2, p. 561.

    Article  CAS  Google Scholar 

  14. L. Calabrese, L. Bonaccorsi, M. Galeano, E. Proverbio, D. Di Pietro, and F. Cappuccini, Identification of damage evolution during SCC on 17-4 PH stainless steel by combining electrochemical noise and acoustic emission techniques, Corros. Sci., 98(2015), p. 573.

    Article  CAS  Google Scholar 

  15. S. Peng, J. Xu, Z.Y. Li, S.Y. Jiang, Z.H. Xie, and P. Munroe, Electrochemical noise analysis of cavitation erosion corrosion resistance of NbC nanocrystalline coating in a 3.5wt% NaCl solution, Surf. Coat. Technol., 415(2021), art. No. 127133.

  16. Z. Zhang, Z.Y. Zhao, P.K. Bai, et al., In-situ monitoring of pitting corrosion of AZ31 magnesium alloy by combining electrochemical noise and acoustic emission techniques, J. Alloys Compd., 878(2021), art. No. 160334.

  17. R.J.K. Wood, J.A. Wharton, A.J. Speyer, and K.S. Tan, Investigation of erosion–corrosion processes using electrochemical noise measurements, Tribol. Int., 35(2002), No. 10, p. 631.

    Article  CAS  Google Scholar 

  18. F. Almeraya-Calderón, F. Estupiñán, R.P. Zambrano, et al., Electrochemical noise transient analysis for 316 and duplex 2205 stainless steels in NaCl and FeCl, Rev. Metall., 48(2012), No. 2, p. 147.

    Google Scholar 

  19. Z. Zhang and X.Q. Wu, Correlated pitting stages of 304 stainless steel with recurrence quantification analysis of electrochemical noise, Mater. Corros., 70(2019), No. 2, p. 197.

    Article  CAS  Google Scholar 

  20. J.M. Sanchez-Amaya, R.A. Cottis, and F.J. Botana, Shot noise and statistical parameters for the estimation of corrosion mechanisms, Corros. Sci., 47(2005), No. 12, p. 3280.

    Article  CAS  Google Scholar 

  21. R.M. Fernández-Domene, E. Blasco-Tamarit, D.M. García-García, and J. García-Antón, Repassivation of the damage generated by cavitation on UNS N08031 in a LiBr solution by means of electrochemical techniques and Confocal Laser Scanning Microscopy, Corros. Sci., 52(2010), No. 10, p. 3453.

    Article  Google Scholar 

  22. L.L. Li, Z.B. Wang, and Y.G. Zheng, Interaction between pitting corrosion and critical flow velocity for erosion-corrosion of 304 stainless steel under jet slurry impingement, Corros. Sci., 158(2019), art. No. 108084.

  23. A. Aballe, M. Bethencourt, F.J. Botana, and M. Marcos, Wavelet transform-based analysis for electrochemical noise, Electrochem. Commun., 1(1999), No. 7, p. 266.

    Article  CAS  Google Scholar 

  24. C. Cai, Z. Zhang, F.H. Cao, Z.N. Gao, J.Q. Zhang, and C.N. Cao, Analysis of pitting corrosion behavior of pure Al in sodium chloride solution with the wavelet technique, J. Electroanal. Chem., 578(2005), No. 1, p. 143.

    Article  CAS  Google Scholar 

  25. J. Li, C.W. Du, Z.Y. Liu, X.G. Li, and M. Liu, Effect of microstructure on the corrosion resistance of 2205 duplex stainless steel. Part 2: Electrochemical noise analysis of corrosion behaviors of different microstructures based on wavelet transform, Constr. Build. Mater., 189(2018), p. 1294.

    Article  CAS  Google Scholar 

  26. D.H. Xia and Y. Behnamian, Electrochemical noise: A review of experimental setup, instrumentation and DC removal, Russ. J. Electrochem., 51(2015), No. 7, p. 593.

    Article  CAS  Google Scholar 

  27. C.G. Wang, L.P. Wu, F. Xue, et al., Electrochemical noise analysis on the pit corrosion susceptibility of biodegradable AZ31 magnesium alloy in four types of simulated body solutions, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1876.

    Article  CAS  Google Scholar 

  28. A. Valor, F. Caleyo, L. Alfonso, D. Rivas, and J.M. Hallen, Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits, Corros. Sci., 49(2007), No. 2, p. 559.

    Article  CAS  Google Scholar 

  29. K.H. Na and S.I. Pyun, Comparison of susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys in neutral chloride solutions using electrochemical noise analysis, Corros. Sci., 50(2008), No. 1, p. 248.

    Article  CAS  Google Scholar 

  30. J.J. Park and S.I. Pyun, Stochastic approach to the pit growth kinetics of Inconel alloy 600 in Cl ion-containing thiosulphate solution at temperatures 25–150°C by analysis of the potentiostatic current transients, Corros. Sci., 46(2004), No. 2, p. 285.

    Article  CAS  Google Scholar 

  31. G. Engelhardt and D.D. Macdonald, Unification of the deterministic and statistical approaches for predicting localized corrosion damage. I. Theoretical foundation, Corros. Sci., 46(2004), No. 11, p. 2755.

    Article  CAS  Google Scholar 

  32. Y.W. Shao, C. Jia, G.Z. Meng, T. Zhang, and F.H. Wang, The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel, Corros. Sci., 51(2009), No. 2, p. 371.

    Article  CAS  Google Scholar 

  33. A.R. Trueman, Determining the probability of stable pit initiation on aluminium alloys using potentiostatic electrochemical measurements, Corros. Sci., 47(2005), No. 9, p. 2240.

    Article  CAS  Google Scholar 

  34. ASTM International, ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus. ASTM International, West Conshohocken, 2010.

    Google Scholar 

  35. Z.X. Li, L.M. Zhang, A.L. Ma, et al., Comparative study on the cavitation erosion behavior of two different rolling surfaces on 304 stainless steel, Tribol. Int., 159(2021), art. No. 106994.

  36. L.M. Zhang, Z.X. Li, J.X. Hu, et al., Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion, Tribol. Int., 155(2021), art. No. 106752.

  37. Y.X. Qiao, S. Wang, B. Liu, Y.G. Zheng, L.H. Bing, and Z.H. Jiang, Synergistic effect of corrosionand cavitation erosion of high nitrogen stainless steel, Acta Metall. Sin., 52(2016), No. 2, p. 2330.

    Google Scholar 

  38. J. Talonen and H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Mater., 55(2007), No. 18, p. 6108.

    Article  CAS  Google Scholar 

  39. S. Eftekhari, H.S. Gugtapeh, and M. Rezaei, Effect of meat extract as an eco-friendly inhibitor on corrosion behavior of mild steel: Electrochemical noise analysis based on shot noise and stochastic theory, Constr. Build. Mater., 292(2021), art. No. 123423.

  40. Z. Zhang, X.Q. Wu, and J.B. Tan, Laboratory-scale identification of corrosion mechanisms by a pattern recognition system based on electrochemical noise measurements, J. Electrochem. Soc., 166(2019), No. 12, p. C284.

    Article  CAS  Google Scholar 

  41. M.J. Bahrami, M. Shahidi, and S.M.A. Hosseini, Comparison of electrochemical current noise signals arising from symmetrical and asymmetrical electrodes made of Al alloys at different pH values using statistical and wavelet analysis. Part I: Neutral and acidic solutions, Electrochim. Acta, 148(2014), p. 127.

    Article  CAS  Google Scholar 

  42. L. Liu, Y. Li, and F.H. Wang, Pitting mechanism on an austenite stainless steel nanocrystalline coating investigated by electrochemical noise and in-situ AFM analysis, Electrochim. Acta, 54(2008), No. 2, p. 768.

    Article  CAS  Google Scholar 

  43. J.M. Jáquez-Muñoz, C. Gaona-Tiburcio, J. Chacón-Nava, et al., Electrochemical corrosion of titanium and titanium alloys anodized in H2SO4 and H3PO4 solutions, Coatings, 12(2022), No. 3, art. No. 325.

  44. R.A. Cottis, M.A.A. Al-Awadhi, H. Al-Mazeedi, and S. Turgoose, Measures for the detection of localized corrosion with electrochemical noise, Electrochim. Acta, 46(2001), No. 24–25, p. 3665.

    Article  CAS  Google Scholar 

  45. H.A.A. Al-Mazeedi and R.A. Cottis, A practical evaluation of electrochemical noise parameters as indicators of corrosion type, Electrochim. Acta, 49(2004), No. 17–18, p. 2787.

    Article  CAS  Google Scholar 

  46. J.M. Sánchez-Amaya, M. Bethencourt, L. González-Rovira, and F.J. Botana, Noise resistance and shot noise parameters on the study of IGC of aluminium alloys with different heat treatments, Electrochim. Acta, 52(2007), No. 23, p. 6569.

    Article  Google Scholar 

  47. M. Sabzi, A.H. Jozani, F. Zeidvandi, M. Sadeghi, and S.M. Dezfuli, Effect of 2-mercaptobenzothiazole concentration on sour-corrosion behavior of API X60 pipeline steel: Electrochemical parameters and adsorption mechanism, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 271.

    Article  CAS  Google Scholar 

  48. S.H.M. Anijdan, M. Sabzi, N. Park, and U. Lee, Sour corrosion performance and sensitivity to hydrogen induced cracking in the X70 pipeline steel: Effect of microstructural variation and pearlite percentage, Int. J. Press. Vessels Pip., 199(2022), art. No. 104759.

  49. T.S. Li, L. Liu, B. Zhang, et al., Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles, Corros. Sci., 85(2014), p. 331.

    Article  CAS  Google Scholar 

  50. G.T. Burstein and P.I. Marshall, The coupled kinetics of film growth and dissolution of stainless steel repassivating in acid solutions, Corros. Sci., 24(1984), No. 5, p. 449.

    Article  CAS  Google Scholar 

  51. S.I. Pyun and E.J. Lee, Effect of halide ion and applied potential on repassivation behaviour of Al−1wt%Si−0.5wt%Cu alloy, Electrochim. Acta, 40(1995), No. 12, p. 1963.

    Article  CAS  Google Scholar 

  52. H. Luong and M.R. Hill, The effects of laser peening on high-cycle fatigue in 7085-T7651 aluminum alloy, Mater. Sci. Eng. A, 477(2008), No. 1–2, p. 208.

    Article  Google Scholar 

  53. O. Takakuwa and H. Soyama, Effect of residual stress on the corrosion behavior of austenitic stainless steel, Adv. Chem. Eng. Sci., 5(2015), No. 1, p. 62.

    Article  CAS  Google Scholar 

  54. A.Q. Lü, Y. Zhang, Y. Li, G. Liu, Q.H. Zang, and C.M. Liu, Effect of nanocrystalline and twin boundaries on corrosion behavior of 316l stainless steel using smat, Acta Metall. Sin. Engl. Lett., 19(2006), No. 3, p. 183.

    Article  Google Scholar 

  55. A.Y. Chen, W.F. Hu, D. Wang, et al., Improving the intergranular corrosion resistance of austenitic stainless steel by high density twinned structure, Scripta Mater., 130(2017), p. 264.

    Article  CAS  Google Scholar 

  56. Q.S. Yang, B. Jiang, Q. Xiang, S.Q. Luo, X.W. Yu, and F.S. Pan, Microstructure evolution and corrosion performance of AZ31 magnesium alloy sheets, Rare Met. Mater. Eng., 45(2016), No. 7, p. 1674.

    Article  CAS  Google Scholar 

  57. L. Peguet, B. Malki, and B. Baroux, Influence of cold working on the pitting corrosion resistance of stainless steels, Corros. Sci., 49(2007), No. 4, p. 1933.

    Article  CAS  Google Scholar 

  58. Z.X. Li, L.M. Zhang, I.I. Udoh, A.L. Ma, and Y.G. Zheng, Deformation-induced martensite in 304 stainless steel during cavitation erosion: Effect on passive film stability and the interaction between cavitation erosion and corrosion, Tribol. Int., 167(2022), art. No. 107422.

  59. E. Hutli, M. Nedeljkovic, and A. Bonyár, Controlled modification of the surface morphology and roughness of stainless steel 316 by a high speed submerged cavitating water jet, Appl. Surf. Sci., 458(2018), p. 293.

    Article  CAS  Google Scholar 

  60. T. Balusamy, T.S.N. Sankara Narayanan, K. Ravichandran, I.S. Park, and M.H. Lee, Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel, Corros. Sci., 74(2013), p. 332.

    Article  CAS  Google Scholar 

  61. X.N. Yi, L.J. Zhang, A.L. Ma, et al., Study on anisotropic oxide formation rate in the initial corrosion stage of 90Cu−10Ni alloy in alkaline NaCl solution by experiments and first-principles calculation, Corros. Sci., 209(2022), art. No. 110768.

  62. V. Pandey, J.K. Singh, K. Chattopadhyay, N.C.S. Srinivas, and V. Singh, Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy, J. Alloys Compd., 723(2017), p. 826.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported of the National Natural Science Foundation of China (Nos. 52101105 and 51975263).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxin Qiao, Lianmin Zhang or Rongyao Ma.

Additional information

Conflict of Interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Qiao, Y., Zhang, L. et al. Effect of surface damage induced by cavitation erosion on pitting and passive behaviors of 304L stainless steel. Int J Miner Metall Mater 30, 1338–1352 (2023). https://doi.org/10.1007/s12613-023-2602-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2602-0

Keywords

Navigation