Skip to main content

Advertisement

Log in

Recycling and recovery of spent copper—indium—gallium—diselenide (CIGS) solar cells: A review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Copper—indium—gallium—diselenide (CIGS) is a fast-evolving commercial solar cell. The firm demand for global carbon reduction and the rise of potential environmental threats necessitate spent CIGS solar cell recycling. In this paper, the sources and characteristics of valuable metals in spent CIGS solar cells were reviewed. The potential environmental impacts of CIGS, including service life, critical material, and material toxicity, were outlined. The main recovery methods of valuable metals in the various types of spent CIGS, including hydrometallurgy, pyrometallurgy, and comprehensive treatment processes, were compared and discussed. The mechanism of different recovery processes was summarized. The challenges faced by different recycling processes of spent CIGS were also covered in this review. Finally, the economic viability of the recycling process was assessed. The purpose of this review is to provide reasonable suggestions for the sustainable development of CIGS and the harmless disposal of spent CIGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Yilmaz, J. Schmitz, and M. Theelen, Potential induced degradation of CIGS PV systems: A literature review, Renewable Sustainable Energy Rev., 154(2022), art. No. 111819.

  2. A.K. Patel, R. Mishra, and S.K. Soni, Performance enhancement of CIGS solar cell with two dimensional MoS2 hole transport layer, Micro Nanostructures, 165(2022), art. No. 207195.

  3. J.Y. Du, M.Q. Zhang, and J.J. Tian, Controlled crystal orientation of two-dimensional Ruddlesden-Popper halide perovskite films for solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 49.

    Article  CAS  Google Scholar 

  4. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, et al., Solar cell efficiency tables (Version 60), Prog. Photovoltaics Res. Appl., 30(2022), No. 7, p. 687.

    Article  Google Scholar 

  5. M.A. Green, Y. Hishikawa, E.D. Dunlop, et al., Solar cell efficiency tables (Version 53), Prog. Photovoltaics Res. Appl., 27(2019), No. 1, p. 3.

    Article  Google Scholar 

  6. F.E. Cherif and H. Sammouda, Prediction of the power conversion efficiency of Perovskite-on-CIGS tandem and triple junctions thin-film cells under solar concentration irradiations by optimization of structural and optoelectronic materials characteristic, Mater. Sci. Eng. B, 280(2022), p. 115712.

    Article  CAS  Google Scholar 

  7. N.G. Dhere, Toward GW/year of CIGS production within the next decade, Sol. Energy Mater. Sol. Cells, 91(2007), No. 15–16, p. 1376.

    Article  CAS  Google Scholar 

  8. Y.J. Zhou, J.W. Li, H. Rechberger, et al., Dynamic criticality of by-products used in thin-film photovoltaic technologies by 2050, J. Clean. Prod., 263(2020), art. No. 121599.

  9. L. Rocchetti and F. Beolchini, Recovery of valuable materials from end-of-life thin-film photovoltaic panels: Environmental impact assessment of different management options, J. Clean. Prod., 89(2015), p. 59.

    Article  CAS  Google Scholar 

  10. V. Fthenakis, W.M. Wang, and H.C. Kim, Life cycle inventory analysis of the production of metals used in photovoltaics, Renewable Sustainable Energy Rev., 13(2009), No. 3, p. 493.

    Article  CAS  Google Scholar 

  11. J.E. De-la-Cruz-Moreno, A.E. Ceniceros-Gómez, O. Morton-Bermea, and E. Hernández-Álvarez, Recovery of indium from jarosite residues of zinc refinery by a hydrometallurgical process, Hydrometallurgy, 203(2021), art. No. 105697.

  12. Z.G. Deng, X.B. Li, C. Wei, G. Fan, M.T. Li, and C.X. Li, Recovery of indium from hard zinc slag by pressure leaching and solvent extraction, JOM, 73(2021), No. 2, p. 721.

    Article  CAS  Google Scholar 

  13. K.F. Zhang, L.L. Qiu, J.Z. Tao, et al., Recovery of gallium from leach solutions of zinc refinery residues by stepwise solvent extraction with N235 and Cyanex 272, Hydrometallurgy, 205(2021), art. No. 105722.

  14. F.W. Liu, G. Biesold, M. Zhang, et al., Recycling and recovery of perovskite solar cells, Mater. Today, 43(2021), p. 185.

    Article  CAS  Google Scholar 

  15. F. Maddah, M. Alitabar, and H. Yoozbashizadeh, Reductive leaching of indium from the neutral leaching residue using oxalic acid in sulfuric acid solution, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 373.

    Article  CAS  Google Scholar 

  16. K. Kacha, F. Djeffal, H. Ferhati, et al., Efficiency improvement of CIGS solar cells using RF sputtered TCO/Ag/TCO thin-film as prospective buffer layer, Ceram. Int., 48(2022), No. 14, p. 20194.

    Article  CAS  Google Scholar 

  17. P. Misra, S. Mandati, T.N. Rao, and B.V. Sarada, A multi-layer Cu: Ga/In sputtered precursor to improve structural properties of CIGS absorber layer, Mater. Today Proc., 39(2021), p. 2037.

    Article  CAS  Google Scholar 

  18. F.T. Munna, V. Selvanathan, K. Sobayel, et al., Diluted chemical bath deposition of CdZnS as prospective buffer layer in CIGS solar cell, Ceram. Int., 47(2021), No. 8, p. 11003.

    Article  CAS  Google Scholar 

  19. M. Acciarri, A. Le Donne, S. Marchionna, et al., CIGS thin films grown by hybrid sputtering-evaporation method: Properties and PV performance, Sol. Energy, 175(2018), p. 16.

    Article  CAS  Google Scholar 

  20. C. Candelise, M. Winskel, and R. Gross, Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity, Prog. Photovolt: Res. Appl., 20(2012), No. 6, p. 816.

    Article  Google Scholar 

  21. V. Fthenakis, Sustainability of photovoltaics: The case for thin-film solar cells, Renewable Sustainable Energy Rev., 13(2009), No. 9, p. 2746.

    Article  CAS  Google Scholar 

  22. N. Mufti, T. Amrillah, A. Taufiq, et al., Review of CIGS-based solar cells manufacturing by structural engineering, Sol. Energy, 207(2020), p. 1146.

    Article  CAS  Google Scholar 

  23. L.L. Yan, Y.M. Bai, B. Yang, et al., Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band, Curr. Appl. Phys., 18(2018), No. 4, p. 484.

    Article  Google Scholar 

  24. L.Y. Sun, B.R. Liu, T. Wu, et al., Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 991.

    Article  CAS  Google Scholar 

  25. A. Urbina, The balance between efficiency, stability and environmental impacts in perovskite solar cells: A review, J. Phys. Energy, 2(2020), No. 2, art. No. 022001.

  26. S. Resalati, T. Okoroafor, A. Maalouf, E. Saucedo, and M. Placidi, Life cycle assessment of different chalcogenide thin-film solar cells, Appl. Energy, 313(2022), art. No. 118888.

  27. L. Stamford and A. Azapagic, Environmental impacts of copper-indium-gallium-selenide (CIGS) photovoltaics and the elimination of cadmium through atomic layer deposition, Sci. Total Environ., 688(2019), p. 1092.

    Article  CAS  Google Scholar 

  28. J.H. Zheng, L.X. Zhu, Z.T. Shen, et al., Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 283.

    Article  CAS  Google Scholar 

  29. J.F. Guillemoles, The puzzle of Cu(In,Ga)Se2 (CIGS) solar cells stability, Thin Solid Films, 403–404(2002), p. 405.

    Article  Google Scholar 

  30. P.R. Elowe, M.A. Stempki, S.J. Rozeveld, and M.W. DeGroot, Development of direct cell inorganic barrier film technology providing exceptional device stability for CIGS solar cells, Chem. Mater., 23(2011), No. 17, p. 3915.

    Article  CAS  Google Scholar 

  31. Z.B. Que, L. Chu, S.B. Zhai, et al., Self-assembled TiO2 holeblocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1280.

    Article  CAS  Google Scholar 

  32. A.F. Sherwani, J.A. Usmani, and Varun, Life cycle assessment of solar PV based electricity generation systems: A review, Renewable Sustainable Energy Rev., 14(2010), No. 1, p. 540.

    Article  CAS  Google Scholar 

  33. P.G.V. Sampaio and M.O.A. González, Photovoltaic solar energy: Conceptual framework, Renewable Sustainable Energy Rev., 74(2017), p. 590.

    Article  Google Scholar 

  34. Y.B. Liu, B.Z. Ma, Y.W. Lü, C.Y. Wang, and Y.Q. Chen, A review of lithium extraction from natural resources, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 209.

    Article  CAS  Google Scholar 

  35. X.L. Zhang, J. Kou, C.B. Sun, R.Y. Zhang, M. Su, and S.F. Li, Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 944.

    Article  CAS  Google Scholar 

  36. Z.Y. Ma, H.Y. Yang, S.T. Huang, Y. Lü, and L. Xiong, Ultra fast microwave-assisted leaching for the recovery of copper and tellurium from copper anode slime, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 582.

    Article  CAS  Google Scholar 

  37. A.K. Tan, N.A. Hamzah, M.A. Ahmad, S.S. Ng, and Z. Hassan, Recent advances and challenges in the MOCVD growth of indium gallium nitride: A brief review, Mater. Sci. Semicond. Process., 143(2022), art. No. 106545.

  38. V. Kashyap and P. Taylor, Extraction and recovery of zinc and indium from residue rich in zinc ferrite, Miner. Eng., 176(2022), art. No. 107364.

  39. F.H. Lu, T.F. Xiao, J. Lin, et al., Resources and extraction of gallium: A review, Hydrometallurgy, 174(2017), p. 105.

    Article  CAS  Google Scholar 

  40. S. Padhy, V. Kumar, N.B. Chaure, and U.P. Singh, Impact of germanium nano layer on the CZTSe absorber layer properties, Mater. Sci. Semicond. Process., 138(2022), art. No. 106276.

  41. C. Rachidy, B. Hartiti, S. Touhtouh, et al., Enhancing CZTS solar cell parameters using CZTSe BSF layer and non-toxic SnS2/In2S3 buffer layer, Mater. Today Proc., 66(2022), p. 26.

    Article  CAS  Google Scholar 

  42. P.M. Reshmi, A.G. Kunjomana, and K.A. Chandrasekharan, Electrical and mechanical properties of vapour grown gallium monotelluride crystals, Int. J. Miner. Metall. Mater., 20(2013), No. 10, p. 967.

    Article  CAS  Google Scholar 

  43. A. Haddout, M. Fahoume, A. Qachaou, A. Raidou, M. Lharch, and N. Elharfaoui, Influence of composition ratio on the performances of kesterite solar cell with double CZTS layers—A numerical approach, Sol. Energy, 189(2019), p. 491.

    Article  CAS  Google Scholar 

  44. B.A. Andersson, Materials availability for large-scale thin-film photovoltaics, Prog. Photovolt: Res. Appl., 8(2000), No. 1, p. 61.

    Article  CAS  Google Scholar 

  45. C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478.

    Article  CAS  Google Scholar 

  46. Z.K. Zhao, H.L. Xie, Z.Y. Wen, et al., Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1488.

    Article  CAS  Google Scholar 

  47. J.P. Namahoro, Q.S. Wu, and H. Su, The copper production and economic growth nexus across the regional and global levels, Resour. Policy, 76(2022), art. No. 102583.

  48. E.V. Maistruk, I.G. Orletskyi, M.I. Ilashchuk, et al., ZnO:Al/ZnS/n-CdTe heterojunctions’ electric and photoelectric properties, Optik, 276(2023), p. 170663.

    Article  CAS  Google Scholar 

  49. W. Tefera, L. Tang, L.L. Lu, R.H. Xie, W. Seifu, and S.K. Tian, Rice cultivars significantly mitigate cadmium accumulation in grains and its bioaccessibility and toxicity in human HL-7702 cells, Environ. Pollut., 272(2021), art. No. 116020.

  50. F.F. Jaldurgam, Z. Ahmad, F. Touati, et al., Enhancement of thermoelectric properties of low-toxic and earth-abundant copper selenide thermoelectric material by microwave annealing, J. Alloys Compd., 904(2022), art. No. 164131.

  51. A. Tanaka, M. Hirata, Y. Kiyohara, et al., Review of pulmonary toxicity of indium compounds to animals and humans, Thin Solid Films, 518(2010), No. 11, p. 2934.

    Article  CAS  Google Scholar 

  52. E.M. Bomhard, The toxicology of gallium oxide in comparison with gallium arsenide and indium oxide, Environ. Toxicol. Pharmacol., 80(2020), art. No. 103437.

  53. D.A. Eisenberg, M.J. Yu, C.W. Lam, O.A. Ogunseitan, and J.M. Schoenung, Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics, J. Hazard. Mater., 260(2013), p. 534.

    Article  CAS  Google Scholar 

  54. H.I. Hsiang, C.Y. Chiang, W.H. Hsu, W.S. Chen, and J.E. Chang, Leaching and re-synthesis of CIGS nanocrystallites from spent CIGS targets, Adv. Powder Technol., 27(2016), No. 3, p. 914.

    Article  CAS  Google Scholar 

  55. S. Gu, B.T. Fu, G. Dodbiba, T. Fujita, and B.Z. Fang, Promising approach for recycling of spent CIGS targets by combining electrochemical techniques with dehydration and distillation, ACS Sustain. Chem. Eng., 6(2018), No. 5, p. 6950.

    Article  CAS  Google Scholar 

  56. A.M.K. Gustafsson, M.R.S. Foreman, and C. Ekberg, Recycling of high purity selenium from CIGS solar cell waste materials, Waste Manage., 34(2014), No. 10, p. 1775.

    Article  CAS  Google Scholar 

  57. Y.W. Lv, P. Xing, B.Z. Ma, et al., Separation and recovery of valuable elements from spent CIGS materials, ACS Sustain. Chem. Eng., 7(2019), No. 24, p. 19816.

    Article  CAS  Google Scholar 

  58. B.Z. Ma, X. Li, B. Liu, et al., Effective separation and recovery of valuable components from CIGS chamber waste via controlled phase transformation and selective leaching, ACS Sustain. Chem. Eng., 8(2020), p. 3026.

    Article  CAS  Google Scholar 

  59. F.W. Liu, T.M. Cheng, Y.J. Chen, et al., High-yield recycling and recovery of copper, indium, and gallium from waste copper indium gallium selenide thin-film solar panels, Sol. Energy Mater. Sol. Cells, 241(2022), art. No. 111691.

  60. A. Amato and F. Beolchini, End-of-life CIGS photovoltaic panel: A source of secondary indium and gallium, Prog. Photovoltaics Res. Appl., 27(2019), No. 3, p. 229.

    Article  CAS  Google Scholar 

  61. W. Palitzsch and U. Loser, Systematic photovoltaic waste recycling, Green, 3(2013), No. 1, p. 79.

    Article  CAS  Google Scholar 

  62. K. Kushiya, M. Ohshita, and M. Tanaka, Development of recycling and reuse technologies for large-area Cu(InGa)Se2-based thin-film modules, [in] Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, 2003, p. 1892.

  63. A.M.K. Gustafsson, B.M. Steenari, and C. Ekberg, Recycling of CIGS solar cell waste materials: Separation of copper, indium, and gallium by high-temperature chlorination reaction with ammonium chloride, Sep. Sci. Technol., 50(2015), No. 15, p. 2415.

    CAS  Google Scholar 

  64. A.M.K. Gustafsson, B.M. Steenari, and C. Ekberg, Evaluation of high-temperature chlorination as a process for separation of copper, indium and gallium from CIGS solar cell waste materials, Sep. Sci. Technol., 50(2015), No. 1, p. 1.

    Article  CAS  Google Scholar 

  65. W.T. Xu, Q. Song, G.C. Song, and Q. Yao, The vapor pressure of Se and SeO2 measurement using thermogravimetric analysis, Thermochim. Acta, 683(2020), art. No. 178480.

  66. G.R. Waitkins and C.W. Clark, Selenium dioxide: Preparation, properties, and use as oxidizing agent, Chem. Rev., 36(1945), No. 3, p. 235.

    Article  CAS  Google Scholar 

  67. J. Yang, Z.L. Zhang, G. Zhang, et al., Process study of chloride roasting and water leaching for the extraction of valuable metals from spent lithium-ion batteries, Hydrometallurgy, 203(2021), art. No. 105638.

  68. R. Panda, K.K. Pant, T. Bhaskar, and S.N. Naik, Dissolution of brominated epoxy resin for environment friendly recovery of copper as cupric oxide nanoparticles from waste printed circuit boards using ammonium chloride roasting, J. Clean. Prod., 291(2021), art. No. 125928.

  69. V.J. Martínez-Gómez, J.C. Fuentes-Aceituno, R. Pérez-Garibay, and J.C. Lee, A study of the electro-assisted reductive leaching of a chalcopyrite concentrate in HCl solutions. Part I: Kinetic behavior and nature of the chalcopyrite reduction, Hydrometallurgy, 181(2018), p. 195.

    Article  Google Scholar 

  70. H.B. Zhao, J. Wang, X.W. Gan, et al., Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of polysulfide by controlling redox potential, Hydrometallurgy, 164(2016), p. 159.

    Article  CAS  Google Scholar 

  71. H. Chen, J.F. He, L.T. Zhu, et al., Eco-friendly oxidation leaching from chalcopyrite powder and kinetics assisted by sodium chloride in organic acid media, Adv. Powder Technol., 33(2022), No. 5, art. No. 103547.

  72. E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, and A. Ballester, Leaching of chalcopyrite with ferric ion. Part I: General aspects, Hydrometallurgy, 93(2008), No. 3–4, p. 81.

    Article  Google Scholar 

  73. H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo, and M. Yarahmadi, Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1887.

    Article  CAS  Google Scholar 

  74. H. Nourmohamadi, M.D. Esrafili, V. Aghazadeh, and B. Rezai, The influence of Ag+ cation on elemental sulfur passive layer and adsorption behavior of chalcopyrite toward Fe3+ and Fe2+ ions: Insights from DFT calculations and molecular dynamics simulations, Physica B, 627(2022), p. 413611.

    Article  CAS  Google Scholar 

  75. D. Hu, B.Z. Ma, X. Li, Y.W. Lv, Y.Q. Chen, and C.Y. Wang, Innovative and sustainable separation and recovery of valuable metals in spent CIGS materials, J. Clean. Prod., 350(2022), art. No. 131426.

  76. D. Hu, B.Z. Ma, X. Li, et al., Efficient separation and recovery of gallium and indium in spent CIGS materials, Sep. Purif. Technol., 282(2022), art. No. 120087.

  77. X. Li, B.Z. Ma, D. Hu, Q.Q. Zhao, Y.Q. Chen, and C.Y. Wang, Efficient separation and purification of indium and gallium in spent copper indium gallium diselenide (CIGS), J. Clean. Prod., 339(2022), art. No. 130658.

  78. W.S. Chen and S.M. Huang, The separation of indium and copper from spent Cu-In targets, Int. J. Appl. Ceram. Technol., 13(2016), No. 2, p. 274.

    Article  CAS  Google Scholar 

  79. W.S. Chen, Y.C. Wang, and K.L. Chiu, The separation and recovery of indium, gallium, and zinc from spent GZO(IGZO) targets, J. Environ. Chem. Eng., 5(2017), No. 1, p. 381.

    Article  CAS  Google Scholar 

  80. H. Miyazaki, Recycling of CIGS absorber layer for deposition of CIGS film, Phys. Status Solidi C, 10(2013), No. 7–8, p. 1031.

    Article  CAS  Google Scholar 

  81. W. Wang, C. Zhang, B. Hu, et al., Influence of alkali element post-deposition treatment on the performance of the CIGS solar cells on flexible stainless steel substrates, Mater. Lett., 302(2021), art. No. 130410.

  82. M.W. Bouabdelli, F. Rogti, M. Maache, and A. Rabehi, Performance enhancement of CIGS thin-film solar cell, Optik, 216(2020), art. No. 164948.

  83. B. Sun, J.T. Dai, K.K. Huang, C.H. Yang, and W.H. Gui, Smart manufacturing of nonferrous metallurgical processes: Review and perspectives, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 611.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Beijing Natural Science Foundation of China (No. 2232038), the National Natural Science Foundation of China (Nos. 52034002 and U1802253), and the Fundamental Research Funds for the Central Universities (No. FRF-TT-19-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baozhong Ma or Chengyan Wang.

Additional information

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, B., Wang, C. et al. Recycling and recovery of spent copper—indium—gallium—diselenide (CIGS) solar cells: A review. Int J Miner Metall Mater 30, 989–1002 (2023). https://doi.org/10.1007/s12613-022-2552-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2552-y

Keywords

Navigation