Skip to main content

Advertisement

Log in

Review on the phosphate-based conversion coatings of magnesium and its alloys

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Magnesium (Mg) and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio, making them suitable for many industries, including aerospace, automobile, and medical. The major challenge is their high susceptibility to corrosion, thereby limiting their usability. The considerably lower reduction potential of Mg compared to other metals makes it vulnerable to galvanic coupling. The oxide layer on Mg offers little corrosion resistance because of its high porosity, inhomogeneity, and fragility. Chemical conversion coatings (CCs) belong to a distinct class because of underlying chemical reactions, which are fundamentally different from other types of coating. Typically, a CC acts as an intermediate sandwich layer between the base metal and an aesthetic paint. Although chromate CCs offer superior performance compared to phosphate CCs, yet still they release carcinogenic hexavalent chromium ions (Cr6+); therefore, their use is prohibited in most European nations under the Registration, Evaluation, Authorization and Restriction of Chemicals legislation framework. Phosphate-based CCs are a cost-effective and environment-friendly alternative. Accordingly, this review primarily focuses on different types of phosphate-based CCs, such as zinc, calcium, Mg, vanadium, manganese, and permanganate. It discusses their mechanisms, current status, pre-treatment practices, and the influence of various parameters—such as pH, temperature, immersion time, and bath composition—on the coating performance. Some challenges associated with phosphate CCs and future research directions are also elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.B. Chen, N. Birbilis, and T.B. Abbott, Review of corrosion-resistant conversion coatings for magnesium and its alloys, Corrosion, 67(2011), No. 3, art. No. 035005

  2. G. Song, Recent progress in corrosion and protection of magnesium alloys, Adv. Eng. Mater., 7(2005), No. 7, p. 563.

    Article  CAS  Google Scholar 

  3. J.E. Gray and B. Luan, Protective coatings on magnesium and its alloys—A critical review, J. Alloys Compd., 336(2002), No. 1–2, p. 88.

    Article  CAS  Google Scholar 

  4. D.D. Zhang, F. Peng, and X.Y. Liu, Protection of magnesium alloys: From physical barrier coating to smart self-healing coating, J. Alloys Compd., 853(2021), art. No. 157010.

  5. O. Gharbi, S. Thomas, C. Smith, and N. Birbilis, Chromate replacement: What does the future hold? npj Mater. Degrad., 2(2018), art. No. 12.

  6. K.W. Cho, V.S. Rao, and H.S. Kwon, Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc, Electrochim. Acta, 52(2007), No. 13, p. 4449.

    Article  CAS  Google Scholar 

  7. European Chemicals Agency (ECHA), Understanding REACH, 2007 [2021-12-31]. https://echa.europa.eu/regulations/reach/understanding-reach

  8. W.K. Chen, C.Y. Bai, C.M. Liu, C.S. Lin, and M.D. Ger, The effect of chromic sulfate concentration and immersion time on the structures and anticorrosive performance of the Cr(III) conversion coatings on aluminum alloys, Appl. Surf. Sci., 256(2010), No. 16, p. 4924.

    Article  CAS  Google Scholar 

  9. S. Jana, M. Olszta, D. Edwards, M. Engelhard, A. Samanta, H.T. Ding, P. Murkute, O.B. Isgor, and A. Rohatgi, Microstructural basis for improved corrosion resistance of laser surface processed AZ31 Mg alloy, Corros. Sci., 191(2021), art. No. 109707.

  10. M. Doerre, L. Hibbitts, G. Patrick, and N.K. Akafuah, Advances in automotive conversion coatings during pretreatment of the body structure: A review, Coatings, 8(2018), No. 11, art. No. 405

  11. S. Pommiers, J. Frayret, A. Castetbon, and M. Potin-Gautier, Alternative conversion coatings to chromate for the protection of magnesium alloys, Corros. Sci., 84(2014), p. 135.

    Article  CAS  Google Scholar 

  12. Z.Y. Yong, J. Zhu, C. Qiu, and Y.L. Liu, Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection, Appl. Surf. Sci., 255(2008), No. 5, p. 1672.

    Article  CAS  Google Scholar 

  13. V.S. Saji, Review of rare-earth-based conversion coatings for magnesium and its alloys, J. Mater. Res. Technol., 8(2019), No. 5, p. 5012.

    Article  CAS  Google Scholar 

  14. S. Shadanbaz and G.J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: A review, Acta Biomater., 8(2012), No. 1, p. 20.

    Article  CAS  Google Scholar 

  15. ASTM International, ASTM Standard B94-18: Standard Specification for Magnesium-Alloy Die Castings, ASTM International, West Conshohocken, PA, 2018.

    Google Scholar 

  16. S.A. Salman, R. Ichino, and M. Okido, A comparative electrochemical study of AZ31 and AZ91 magnesium alloy, Int. J. Corros., 2010(2010), art. No. 412129.

  17. H.Y. Yang, X.W. Guo, X.B. Chen, and N. Birbilis, A homogenisation pre-treatment for adherent and corrosion-resistant Ni electroplated coatings on Mg-alloy AZ91D, Corros. Sci., 79(2014), p. 41.

    Article  CAS  Google Scholar 

  18. X.B. Chen, H.Y. Yang, T.B. Abbott, M.A. Easton, and N. Birbilis, Corrosion protection of magnesium and its alloys by metal phosphate conversion coatings, Surf. Eng., 30(2014), No. 12, p. 871.

    Article  CAS  Google Scholar 

  19. L. Pezzato, D. Vranescu, M. Sinico, C. Gennari, A.G. Settimi, P. Pranovi, K. Brunelli, and M. Dabalà, Tribocorrosion properties of PEO coatings produced on AZ91 magnesium alloy with silicate- or phosphate-based electrolytes, Coatings, 8(2018), No. 6, art. No. 202.

  20. Z.M. Liu and W. Gao, Electroless nickel plating on AZ91 Mg alloy substrate, Surf. Coat. Technol., 200(2006), No. 16–17, p. 5087.

    Article  CAS  Google Scholar 

  21. K. Brunelli, M. Dabalà, I. Calliari, and M. Magrini, Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys, Corros. Sci., 47(2005), No. 4, p. 989.

    Article  CAS  Google Scholar 

  22. W.J. Tomlinson and J.P. Mayor, Formation, microstructure, surface roughness, and porosity of electroless nickel coatings, Surf. Eng., 4(1988), No. 3, p. 235.

    Article  CAS  Google Scholar 

  23. C.Y. Zhang, B. Liu, B.X. Yu, X.P. Lu, Y. Wei, T. Zhang, J.M.C. Mol, and F.H. Wang, Influence of surface pretreatment on phosphate conversion coating on AZ91 Mg alloy, Surf. Coat. Technol., 359(2019), p. 414.

    Article  CAS  Google Scholar 

  24. T. Li, Z.J. Leng, S.F. Wang, X.T. Wang, R. Ghomashchi, Y.S. Yang, and J.X. Zhou, Comparison of the effects of pre-activators on morphology and corrosion resistance of phosphate conversion coating on magnesium alloy, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.03.012

  25. H.Y. Yang, X.B. Chen, X.W. Guo, G.H. Wu, W.J. Ding, and N. Birbilis, Coating pretreatment for Mg alloy AZ91D, Appl. Surf. Sci., 258(2012), No. 14, p. 5472.

    Article  CAS  Google Scholar 

  26. Y.K. Zhang, J. You, J.Z. Lu, C.Y. Cui, Y.F. Jiang, and X.D. Ren, Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy, Surf. Coat. Technol., 204(2010), No. 24, p. 3947.

    Article  CAS  Google Scholar 

  27. J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, and J.W. Zhong, Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts, Acta Mater., 58(2010), No. 11, p. 3984.

    Article  CAS  Google Scholar 

  28. X.C. Zhang, F. Zhong, X.P. Li, B. Liu, C.Y. Zhang, B. Buhe, T. Zhang, G.Z. Meng, and F.H. Wang, The effect of hot extrusion on the microstructure and anti-corrosion performance of LDHs conversion coating on AZ91D magnesium alloy, J. Alloys Compd., 788(2019), p. 756.

    Article  CAS  Google Scholar 

  29. G.Q. Hu, K. Guan, L.B. Lu, J.R. Zhang, N. Lu, and Y.C. Guan, Engineered functional surfaces by laser microprocessing for biomedical applications, Engineering, 4(2018), No. 6, p. 822.

    Article  CAS  Google Scholar 

  30. H.L. Liu, Z.P. Tong, Y. Yang, W.F. Zhou, J.N. Chen, X.Y. Pan, and X.D. Ren, Preparation of phosphate conversion coating on laser surface textured surface to improve corrosion performance of magnesium alloy, J. Alloys Compd., 865(2021), art. No. 158701.

  31. H.L. Liu, Z.P. Tong, W.F. Zhou, Y. Yang, J.F. Jiao, and X.D. Ren, Improving electrochemical corrosion properties of AZ31 magnesium alloy via phosphate conversion with laser shock peening pretreatment, J. Alloys Compd., 846(2020), art. No. 155837.

  32. M.A. Hafeez, A. Farooq, A. Zang, A. Saleem, and K.M. Deen, Phosphate chemical conversion coatings for magnesium alloys: A review, J. Coat. Technol. Res., 17(2020), No. 4, p. 827.

    Article  CAS  Google Scholar 

  33. A. Pragatheeswaran, P.V. Ananthapadmanabhan, Y. Chakravarthy, S. Bhandari, V. Chaturvedi, A. Nagaraj, and K. Ramachandran, Plasma spray-deposited lanthanum phosphate coatings for protection against molten uranium corrosion, Surf. Coat. Technol., 265(2015), p. 166.

    Article  CAS  Google Scholar 

  34. Y.L. Cheng, H.L. Wu, Z.H. Chen, H.M. Wang, and L.L. Li, Phosphating process of AZ31 magnesium alloy and corrosion resistance of coatings, Trans. Nonferrous Met. Soc. China, 16(2006), No. 5, p. 1086.

    Article  CAS  Google Scholar 

  35. R. Amini and A.A. Sarabi, The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent, Appl. Surf. Sci., 257(2011), No. 16, p. 7134.

    Article  CAS  Google Scholar 

  36. L.Y. Niu, J.X. Lin, Y. Li, Z.M. Shi, and L.C. Xu, Improvement of anticorrosion and adhesion to magnesium alloy by phosphate coating formed at room temperature, Trans. Nonferrous Met. Soc. China, 20(2010), No. 7, p. 1356.

    Article  CAS  Google Scholar 

  37. Q. Li, S.Q. Xu, J.Y. Hu, S.Y. Zhang, X.K. Zhong, and X.K. Yang, The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D, Electrochim. Acta, 55(2010), No. 3, p. 887.

    Article  CAS  Google Scholar 

  38. N.V. Phuong, K.H. Lee, D. Chang, and S. Moon, Effects of Zn2+ concentration and pH on the zinc phosphate conversion coatings on AZ31 magnesium alloy, Corros. Sci., 74(2013), p. 314.

    Article  CAS  Google Scholar 

  39. W. Shang, C.B. He, Y.Q. Wen, Y.Y. Wang, and Z. Zhang, Performance evaluation of triethanolamine as corrosion inhibitor for magnesium alloy in 3.5 wt% NaCl solution, RSC Adv., 6(2016), No. 115, p. 113967.

    Article  CAS  Google Scholar 

  40. S.C.G. Leeuwenburgh, M.C. Heine, J.G.C. Wolke, S.E. Pratsinis, J. Schoonman, and J.A. Jansen, Morphology of calcium phosphate coatings for biomedical applications deposited using Electrostatic Spray Deposition, Thin Solid Films, 503(2006), No. 1–2, p. 69.

    Article  CAS  Google Scholar 

  41. Y.C. Su, Y.T. Guo, Z.L. Huang, Z.H. Zhang, G.Y. Li, J.S. Lian, and L.Q. Ren, Preparation and corrosion behaviors of calcium phosphate conversion coating on magnesium alloy, Surf. Coat. Technol., 307(2016), p. 99.

    Article  CAS  Google Scholar 

  42. B. Liu, X. Zhang, G.Y. Xiao, and Y.P. Lu, Phosphate chemical conversion coatings on metallic substrates for biomedical application: A review, Mater. Sci. Eng. C, 47(2015), p. 97.

    Article  CAS  Google Scholar 

  43. Y.C. Su, Y.C. Su, Y.B. Lu, J.S. Lian, and G.Y. Li, Composite microstructure and formation mechanism of calcium phosphate conversion coating on magnesium alloy, J. Electrochem. Soc., 163(2016), No. 9, p. G138.

    Article  CAS  Google Scholar 

  44. P. Amaravathy and T.S. Sampath Kumar, Novel strontium doped zinc calcium phosphate conversion coating on AZ31 magnesium alloy for biomedical applications, J. Biomimetics Biomater. Biomed. Eng., 34(2017), p. 57.

    Article  CAS  Google Scholar 

  45. W. Zai, X.R. Zhang, Y.C. Su, H.C. Man, G.Y. Li, and J.S. Lian, Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy, Surf. Coat. Technol., 397(2020), art. No. 125919.

  46. Y.T. Guo, Y.C. Su, R. Gu, Z.H. Zhang, G.Y. Li, J.S. Lian, and L.Q. Ren, Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating, Surf. Coat. Technol., 401(2020), art. No. 126318.

  47. D. Liu, Y.Y. Li, Y. Zhou, and Y.G. Ding, The preparation, characterization and formation mechanism of a calcium phosphate conversion coating on magnesium alloy AZ91D, Materials (Basel), 11(2018), No. 6, art. No. 908.

  48. X.B. Chen, N. Birbilis, and T.B. Abbott, Effect of [Ca2+] and \(\left[{{\rm{PO}}_4^{3 -}} \right]\) levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D, Corros. Sci., 55(2012), p. 226.

    Article  CAS  Google Scholar 

  49. R.C. Zeng, Z.D. Lan, L.H. Kong, Y.D. Huang, and H.Z. Cui, Characterization of calcium-modified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy, Surf. Coat. Technol., 205(2011), No. 11, p. 3347.

    Article  CAS  Google Scholar 

  50. R.X. Sun, S.K. Yang, and T. Lv, Corrosion behavior of AZ91D magnesium alloy with a calcium—phosphate—vanadium composite conversion coating, Coatings, 9(2019), No. 6, art. No. 379.

  51. M.F. Morks, Magnesium phosphate treatment for steel, Mater. Lett., 58(2004), No. 26, p. 3316.

    Article  CAS  Google Scholar 

  52. N. van Phuong and S. Moon, Comparative corrosion study of zinc phosphate and magnesium phosphate conversion coatings on AZ31 Mg alloy, Mater. Lett., 122(2014), p. 341.

    Article  CAS  Google Scholar 

  53. M. Fouladi and A. Amadeh, Comparative study between novel magnesium phosphate and traditional zinc phosphate coatings, Mater. Lett., 98(2013), p. 1.

    Article  CAS  Google Scholar 

  54. W. Zai, Y.C. Su, H.C. Man, J.S. Lian, and G.Y. Li, Effect of pH value and preparation temperature on the formation of magnesium phosphate conversion coatings on AZ31 magnesium alloy, Appl. Surf. Sci., 492(2019), p. 314.

    Article  CAS  Google Scholar 

  55. J. Jayaraj, S. Amruth Raj, A. Srinivasan, S. Ananthakumar, U.T.S. Pillai, N.G.K. Dhaipule, and U.K. Mudali, Composite magnesium phosphate coatings for improved corrosion resistance of magnesium AZ31 alloy, Corros. Sci., 113(2016), p. 104.

    Article  CAS  Google Scholar 

  56. N. van PHUONG, M. Gupta, and S. Moon, Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy, Trans. Nonferrous Met. Soc. China, 27(2017), No. 5, p. 1087.

    Article  Google Scholar 

  57. W.Q. Zhou, D.Y. Shan, E.H. Han, and W. Ke, Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy, Corros. Sci., 50(2008), No. 2, p. 329.

    Article  CAS  Google Scholar 

  58. W.Q. Zhou, W. Tang, Q. Zhao, S.W. Wu, and E.H. Han, Influence of additive on structure and corrosion resistance of manganese phosphate film on AZ91 magnesium alloy, Mater. Sci. Forum, 686(2011), p. 176.

    Article  CAS  Google Scholar 

  59. X.J. Cui, C.H. Liu, R.S. Yang, Q.S. Fu, X.Z. Lin, and M. Gong, Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism, Corros. Sci., 76(2013), p. 474.

    Article  CAS  Google Scholar 

  60. X.J. Cui, C.H. Liu, R.S. Yang, X.Z. Lin, and M. Gong, Preparation and characterization of phosphate film for magnesium alloy AZ31, Phys. Procedia, 25(2012), p. 194.

    Article  CAS  Google Scholar 

  61. X.J. Cui, C.H. Liu, R.S. Yang, M.T. Li, X.Z. Lin, and M. Gong, Phosphate film free of chromate, fluoride and nitrite on AZ31 magnesium alloy and its corrosion resistance, Trans. Nonferrous Met. Soc. China, 22(2012), No. 11, p. 2713.

    Article  CAS  Google Scholar 

  62. T. Li, S.F. Wang, H.T. Liu, J.H. Wu, S.Q. Tang, Y.S. Yang, X.T. Wang, and J.X. Zhou, Improved corrosion resistance of Mg alloy by a green phosphating: Insights into pre-activation, temperature, and growth mechanism, J. Mater. Sci., 56(2021), No. 1, p. 828.

    Article  CAS  Google Scholar 

  63. X.B. Chen, X. Zhou, T.B. Abbott, M.A. Easton, and N. Birbilis, Double-layered manganese phosphate conversion coating on magnesium alloy AZ91D: Insights into coating formation, growth and corrosion resistance, Surf. Coat. Technol., 217(2013), p. 147.

    Article  CAS  Google Scholar 

  64. A.S. Hamdy, I. Doench, and H. Möhwald, Assessment of a one-step intelligent self-healing vanadia protective coatings for magnesium alloys in corrosive media, Electrochim. Acta, 56(2011), No. 5, p. 2493.

    Article  CAS  Google Scholar 

  65. K.Z. Chong and T.S. Shih, Conversion-coating treatment for magnesium alloys by a permanganate—phosphate solution, Mater. Chem. Phys., 80(2003), No. 1, p. 191.

    Article  CAS  Google Scholar 

  66. M. Zhao, S.S. Wu, J.R. Luo, Y. Fukuda, and H. Nakae, A chromium-free conversion coating of magnesium alloy by a phosphate-permanganate solution, Surf. Coat. Technol., 200(2006), No. 18–19, p. 5407.

    Article  CAS  Google Scholar 

  67. F. Zucchi, A. Frignani, V. Grassi, G. Trabanelli, and C. Monticelli, Stannate and permanganate conversion coatings on AZ31 magnesium alloy, Corros. Sci., 49(2007), No. 12, p. 4542.

    Article  CAS  Google Scholar 

  68. L.Y. Niu, S.H. Chang, X. Tong, G.Y. Li, and Z.M. Shi, Analysis of characteristics of vanadate conversion coating on the surface of magnesium alloy, J. Alloys Compd., 617(2014), p. 214.

    Article  CAS  Google Scholar 

  69. P. Zhou, B.X. Yu, Y.J. Hou, G.Q. Duan, L.X. Yang, B. Zhang, T. Zhang, and F.H. Wang, Revisiting the cracking of chemical conversion coating on magnesium alloys, Corros. Sci., 178(2021), art. No. 109069.

  70. S.Y. Jian, Y.C. Tzeng, M.D. Ger, K.L. Chang, G.N. Shi, W.H. Huang, C.Y. Chen, and C.C. Wu, The study of corrosion behavior of manganese-based conversion coating on LZ91 magnesium alloy: Effect of addition of pyrophosphate and cerium, Mater. Des., 192(2020), art. No. 108707.

  71. J. Jayaraj, K.R. Rajesh, S. Amruth Raj, A. Srinivasan, S. Ananthakumar, N.G.K. Dhaipule, S.K. Kalpathy, U.T.S. Pillai, and U.K. Mudali, Investigation on the corrosion behavior of lanthanum phosphate coatings on AZ31 Mg alloy obtained through chemical conversion technique, J. Alloys Compd., 784(2019), p. 1162.

    Article  CAS  Google Scholar 

  72. H.A. Salam, I. Doench, and H. Moehwald, The effect of vanadia surface treatment on the corrosion inhibition characteristics of an advanced magnesium elektron 21 alloy in chloride media, Int. J. Electrochem. Sci., 7(2012), No. 9, p. 7751.

    Google Scholar 

  73. R.C. Zeng, X.X. Sun, Y.W. Song, F. Zhang, S.Q. Li, H.Z. Cui, and E.H. Han, Influence of solution temperature on corrosion resistance of Zn—Ca phosphate conversion coating on biomedical Mg—Li—Ca alloys, Trans. Nonferrous Met. Soc. China, 23(2013), No. 11, p. 3293.

    Article  CAS  Google Scholar 

  74. S.J. Liao, B.X. Yu, X.L. Zhang, X.P. Lu, P. Zhou, C.Y. Zhang, X.B. Chen, T. Zhang, and F.H. Wang, New design principles for the bath towards chromate- and crack-free conversion coatings on magnesium alloys, J. Magnes. Alloys, 9(2021), No. 2, p. 505.

    Article  CAS  Google Scholar 

  75. M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci., 89(2017), p. 92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. Kumar and K.K. Sahu acknowledge funding from Uchchatar Avishkar Yojna (UAY) (Phase II) project (code-IITBBS_004). D. Saran acknowledges funding from Prime Minister’s Research Fellows (PMRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kisor K. Sahu.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saran, D., Kumar, A., Bathula, S. et al. Review on the phosphate-based conversion coatings of magnesium and its alloys. Int J Miner Metall Mater 29, 1435–1452 (2022). https://doi.org/10.1007/s12613-022-2419-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2419-2

Keywords

Navigation