Skip to main content
Log in

Effects of Zr content on electrochemical performance of Ti/Sn−Ru−Co−ZrOx electrodes

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The low cell voltage during electrolytic Mn from the MnCl2 system can effectively reduce the power consumption. In this work, the Ti/Sn−Ru−Co−Zr modified anodes were obtained by using thermal decomposition oxidation. The physical parameters of coatings were observed by SEM (scanning electron microscope). Based on the electrochemical performance and SEM/XRD (X-ray diffraction) of the coatings, the influence of Zr on electrode performance was studied and analyzed. When the mole ratio of Sn−Ru−Co−Zr is 6:1:0.8:0.3, the cracks on the surface of coatings were the smallest, and the compactness was the best due to the excellent filling effect of ZrO2 nanoparticles. Moreover, the electrode prepared under this condition had the lowest mass transfer resistance and high chloride evolution activity in the 1mol% NH4Cl and 1.5mol% HCl system. The service life of 3102 h was achieved according to the empirical formula of accelerated-life-test of the new type anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Lu, D. Dreisinger, and T. Glück, Manganese electrodeposition—A literature review, Hydrometallurgy, 141(2014), p. 105.

    Article  CAS  Google Scholar 

  2. S.K. Padhy, P. Patnaik, B.C. Tripathy, M.K. Ghosh, and I.N. Bhattacharya, Electrodeposition of manganese metal from sulphate solutions in the presence of sodium octyl sulphate, Hydrometallurgy, 165(2016), p. 73.

    Article  CAS  Google Scholar 

  3. G. Tsurtsumia, D. Shengelia, N. Koiava, et al., Novel hydroelectrometallurgical technology for simultaneous production of manganese metal, electrolytic manganese dioxide, and manganese sulfate monohydrate, Hydrometallurgy, 186(2019), p. 260.

    Article  CAS  Google Scholar 

  4. E. Rocca, G. Bourguignon, and J. Steinmetz, Corrosion management of PbCaSn alloys in lead-acid batteries: Effect of composition, metallographic state and voltage conditions, J. Power Sources, 161(2006), No. 1, p. 666.

    Article  CAS  Google Scholar 

  5. E. Rudnik, Effect of gluconate ions on electroreduction phenomena during manganese deposition on glassy carbon in acidic chloride and sulfate solutions, J. Electroanal. Chem., 741(2015), p. 20.

    Article  CAS  Google Scholar 

  6. J.E. Lewis, P.H. Scaife, and D.A.J. Swinkels, Electrolytic manganese metal from chloride electrolytes. I. Study of deposition conditions, J. Appl. Electrochem., 6(1976), No. 3, p. 199.

    Article  CAS  Google Scholar 

  7. X.Z. Cao, D.B. Dreisinger, J.M. Lu, and F. Belanger, Electrore-fining of high purity manganese, Hydrometallurgy, 171(2017), p. 412.

    Article  CAS  Google Scholar 

  8. A. Sulcius, E. Griskonis, K. Kantminiene, and N. Zmuidzinaviciene, Influence of different electrolysis parameters on electrodeposition of γ- and α-Mn from pure electrolytes—A review with special reference to Russian language literature, Hydrometallurgy, 137(2013), p. 33.

    Article  CAS  Google Scholar 

  9. P. Wei, O.E. Hileman Jr, M.R. Bateni, X.H. Deng, and A. Petric, Manganese deposition without additives, Surf. Coat. Technol., 201(2007), No. 18, p. 7739.

    Article  CAS  Google Scholar 

  10. Y.X. Zheng, Preparation of electrolytic manganese metal from MnCl2 system with graphite substract lead dioxide anode, China Manganese Ind., 16(1998), No. 3, p. 30.

    Google Scholar 

  11. W.C. Yang, W.J. Peng, X.H. Li, et al., Preparation of titanium-substrate modified Ti/SnO2/MnO2 anode plate for electrolytic manganese metal and its performance study, Min. Metall. Eng., 34(2014), No. 3, p. 90.

    Google Scholar 

  12. Y.Q. Wen, W. Shang, B.H. Xie, C.B. He, Y.Y. Wang, and D. Kong, Preparation and properties of composite coating modified titanium anode for electrolytic manganese dioxide, China Surf. Eng., 30(2017), No. 2, p. 85.

    Google Scholar 

  13. J.M. Hu, H.M. Meng, J.Q. Zhang, and C.N. Cao, Degradation mechanism of long service life Ti/IrO2−Ta2O5 oxide anodes in sulphuric acid, Corros. Sci., 44(2002), No. 8, p. 1655.

    Article  CAS  Google Scholar 

  14. E. Horváth, J. Kristóf, L. Vázquez-Gómez, Á. Rédey, and V. Vágvölgyi, Investigationof RuO2−IrO2-−SnO2 thin film evolution, J. Therm. Anal. Calorim., 86(2006), No. 1, p. 141.

    Article  Google Scholar 

  15. Z.X. Zhang and D. Huang, Coated Titanium Electrode, Metallurgical Industry Press, Beijing, 2014, p. 62.

    Google Scholar 

  16. Y.Y. Chen, T. Zhang, X. Wang, Y.Q. Shao, and D. Tang, Phase structure and microstructure of a nanoscale TiO2−RuO2−IrO2−Ta2O5 anode coating on titanium, J. Am. Ceram. Soc., 91(2008), No. 12, p. 4154.

    Article  CAS  Google Scholar 

  17. W. Zhang, E. Ghali, and G. Houlachi, Review of oxide coated catalytic titanium anodes performance for metal electrowinning, Hydrometallurgy, 169(2017), p. 456.

    Article  CAS  Google Scholar 

  18. H. You, Y.H. Cui, Y.J. Feng, J.F. Liu, and W.M. Cai, Preparation and performance of SnO2 electrocatalytic electrode with titanium-based Co interlayer, Mater. Sci. Technol., 12(2004), No. 3, p. 230.

    Google Scholar 

  19. L.H. Chang, B.M. Chen, H.H. Qiao, et al., Study of the effects of pretreatment processing on the properties of metal oxide coatings on Ti-based sheet, J. Electrochem. Soc., 168(2021), No. 3, art. No. 033501.

  20. D.P. Wang, G. Chen, A.D. Wang, et al., Corrosion behavior of single- and poly-crystalline dual-phase TiAl−Ti3Al alloy in NaCl solution, Int. J. Miner. Metall. Mater, 2022. DOI: https://doi.org/10.1007/s12613-022-2513-5

  21. R.D. Xu, L.P. Huang, J.F. Zhou, P. Zhan, Y.Y. Guan, and Y. Kong, Effects of tungsten carbide on electrochemical properties and microstructural features of Al/Pb−PANI−WC composite inert anodes used in zinc electrowinning, Hydrometallurgy, 125–126(2012), p. 8.

    Article  Google Scholar 

  22. J.H. Huang, M.J. Hou, J.Y. Wang, et al., RuO2 nanoparticles decorate belt-like anatase TiO2 for highly efficient chlorine evolution, Electrochimica Acta, 339(2020), art. No. 135878.

  23. B.M. Chen, S.C. Wang, J.H. Liu, et al., Corrosion resistance mechanism of a novel porous Ti/Sn−Sb−RuOx/β-PbO2 anode for zinc electrowinning, Corros. Sci., 144(2018), p. 136.

    Article  CAS  Google Scholar 

  24. S. Trasatti, Structure of the metal/electrolyte solution interface: New data for theory, Electrochimica Acta, 36(1991), No. 11–12, p. 1659.

    Article  CAS  Google Scholar 

  25. H. Vogt, Note on a method to interrelate inner and outer electrode areas, Electrochimica Acta, 39(1994), No. 13, p. 1981.

    Article  CAS  Google Scholar 

  26. Y. Chen, L. Hong, H.M. Xue, et al., Preparation and characterization of TiO2−NTs/SnO2−Sb electrodes by electrodeposition, J. Electroanal. Chem., 648(2010), No. 2, p. 119.

    Article  CAS  Google Scholar 

  27. Y.W. Yao, M.M. Zhao, C.M. Zhao, and H.J. Zhang, Preparation and properties of PbO2−ZrO2 nanocomposite electrodes by pulse electrodeposition, Electrochimica Acta, 117(2014), p. 453.

    Article  CAS  Google Scholar 

  28. Y.W. Yao, T. Zhou, C.M. Zhao, Q.M. Jing, and Y. Wang, Influence of ZrO2 particles on fluorine-doped lead dioxide electrodeposition process from nitrate bath, Electrochim. Acta, 99(2013), p. 225.

    Article  CAS  Google Scholar 

  29. Y.H. Song, G. Wei, and R.C. Xiong, Structure and properties of PbO2−CeO2 anodes on stainless steel, Electrochim. Acta, 52(2007), No. 24, p. 7022.

    Article  CAS  Google Scholar 

  30. J.H. Liu, B.M. Chen, S. Chen, S.C. Wang, Z.C. Guo, Preparation and electrochemical performance of the stainless steel/α-PbO2−ZrO2/β-PbO2−ZrO2−CNT composite anode, ECS J. Solid State Sci. Technol., 9(2020), No. 12, art. No. 121011.

  31. H. Mazhari Abbasi, K. Jafarzadeh, and S.M. Mirali, An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2+Ta2O5 coating in an OER application, J. Electroanal. Chem., 777(2016), p. 67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51564029, 51504111, 52064028, and 22002054), the China Postdoctoral Science Foundation (No. 2018M633418), the Technology Innovation Talents Project of Yunnan Province (No. 2019HB111), and Analysis and Testing Foundation of Kunming University of Science and Technology (Nos. 2019 M20182202013, 2020M20192202035, and 2020M2019 2202099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buming Chen.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Chen, S., Xie, X. et al. Effects of Zr content on electrochemical performance of Ti/Sn−Ru−Co−ZrOx electrodes. Int J Miner Metall Mater 29, 2181–2188 (2022). https://doi.org/10.1007/s12613-021-2326-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2326-y

Keywords

Navigation