Skip to main content
Log in

Reciprocating sliding wear properties of sintered Al-B4C composites

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The fabrication of boron carbide reinforced aluminum matrix composites (Al-B4C) with various contents of B4C (1wt%, 6wt%, 15wt%, and 30wt%) was performed by powder metallurgy, and the influence of the content of B4C on their mechanical and tribological behavior was examined. The Al-30B4C composites recorded the highest density (∼2.54 g/cm3), lowest porosity (4%), maximum Vickers hardness (HV ∼75), lowest weight loss (0.4 mg), and lowest specific wear rate (0.00042 mm3/(N·m)) under a load of 7 N, with an enhancement of 167% in hardness, a decrease of 75.8% in weight loss, and a decrease of 76.7% in the specific wear rate compared with pure aluminum. In addition, the scanning electron microscope images of the worn surface revealed that the Al-B4C composite has the narrowest wear groove of 0.85 mm at a load of 7 N, and the main wear mechanism was observed as an abrasive wear mechanism. According to the friction analysis, the coefficient of friction between surfaces increased with increasing boron carbide content and with decreasing applied load. In conclusion, B4C is an effective reinforcement material in terms of tribological and mechanical performance of the Al-B4C composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Rajmohan and K. Palanikumar, Optimization of machining parameters for multi-performance characteristics in drilling hybrid metal matrix composites, J. Compos. Mater., 46(2012), No. 7, p. 869.

    Article  CAS  Google Scholar 

  2. A. Saboori, C. Novara, M. Pavese, C. Badini, F. Giorgis, and P. Fino, An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy, J. Mater. Eng. Perform., 26(2017), No. 3, p. 993.

    Article  CAS  Google Scholar 

  3. A. Alizadeh, E. Taheri-Nassaj and H.R. Baharvandi, Preparation and investigation of Al-4 wt % B4C nanocomposite powders using mechanical milling, Bull. Mater. Sci., 34(2011), No. 5, p. 1039.

    Article  CAS  Google Scholar 

  4. O.D. Neikow, S.S. Naboychenko, and G. Dawson, Handbook of Non-Ferrous Metal Powders — Technologies and Applications, 2nd ed., Elsevier, 2009.

  5. B. Ramesh and T. Senthilvelan, Formability characteristics of aluminium based composites a review, Int. J. Eng. Technol., 2(2010), No. 1, p. 1.

    Article  Google Scholar 

  6. G.S. Hanumanth and G.A. Irons, Particle incorporation by melt stirring for the production of metal-matrix composites, J. Mater. Sci., 28(1993), p. 2459.

    Article  CAS  Google Scholar 

  7. Y. Sahin and S. Murphy, The effect of fibre orientation on the dry sliding wear of borsic-reinforced 2014 Al alloy, J. Mater. Sci., 31(1996), No. 20, p. 5399.

    Article  CAS  Google Scholar 

  8. M. Kok, Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites, J. Mater. Process. Technol., 161(2005), No. 3, p. 381.

    Article  CAS  Google Scholar 

  9. K.K. Chawla, Composite Materials, Springer, New York, 2006.

    Google Scholar 

  10. D.K. Koli, G. Agnihotri, and R. Purohit, Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields, Mater. Today-Proc., 2(2015), No. 4–5, p. 3032.

    Article  CAS  Google Scholar 

  11. A.J. Macke, B.F. Schultz, and P.K. Rohatgi, Metal matrix composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance, Adv. Mater. Processes, 170(2012), No. 3, p. 19.

    CAS  Google Scholar 

  12. J.K. Chen and I.S. Huang, Thermal properties of aluminum-graphite composites by powder metallurgy, Composites Part B, 44(2013), No. 1, p. 698.

    Article  CAS  Google Scholar 

  13. T.M. Lillo, Enhancing ductility of Al6061+10 wt.% B4C through equal-channel angular extrusion processing, Mater. Sci. Eng. A, 410-411(2005), p. 443.

    Article  Google Scholar 

  14. H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch, and S.R. Nutt, Microstructural investigation on B4C/Al-7093 composite, Mater. Sci. Eng. A, 297(2001), No. 1–2, p. 94.

    Article  Google Scholar 

  15. V.M. Ravindranath, G.S. Shiva Shankar, S. Basavarajappa, and N.G. Siddesh Kumar, Dry sliding wear behavior of hybrid aluminum metal matrix composite reinforced with boron carbide and graphite particles, Mater. Today-Proc., 4(2017), No. 10, p. 11163.

    Article  Google Scholar 

  16. W. Xue, L.T. Jiang, B. Zhang, D. Jing, T. He, G.Q. Chen, Z.Y. Xiu, and G.H. Wu, Quantitative analysis of the effects of particle content and aging temperature on aging behavior in B4C/6061Al composites, Mater. Charact., 163(2020), art. No. 110305.

  17. Z.L. Chao, T.T. Sun, L.T. Jiang, Z.S. Zhou, G.Q. Chen, Q.Z, and G.H. Wu, Ballistic behavior and microstructure evolution of B4C/AA2024 composites, Ceram. Int., 45(2019), No. 16, p. 20539.

    Article  CAS  Google Scholar 

  18. Z.L. Chao, L.T. Jiang, G.Q. Chen, J. Qiao, Q.Z, Z.H. Yu, Y.F. Cao, and G.H. Wu, The microstructure and ballistic performance of B4C/AA2024 functionally graded composites with wide range B4C volume fraction, Composites Part B, 161(2019), p. 627.

    Article  CAS  Google Scholar 

  19. N. Radhika, J. Sasikumar, J.L. Sylesh, and R. Kishore, Dry reciprocating wear and frictional behaviour of B4C reinforced functionally graded and homogenous aluminium matrix composites, J. Mater. Res. Technol., 9(2020), No. 2, p. 1578.

    Article  CAS  Google Scholar 

  20. D. Patidar and R.S. Rana, Effect of B4C particle reinforcement on the various properties of aluminium matrix composites: a survey paper, Mater. Today-Proc., 4(2017), No. 2, p. 2981.

    Article  Google Scholar 

  21. N. Senthilkumar, T. Tamizharasan, and M. Anbarasan, Mechanical characterization and tribological behaviour of Al-Gr-B4C metal matrix composite prepared by stir casting technique, J. Adv. Eng. Res., 1(2014), No. 1, p. 48.

    Google Scholar 

  22. N. Yuvaraj, S. Aravindan, and Vipin, Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization, J. Mater. Res. Technol., 4(2015), No. 4, p. 398.

    Article  CAS  Google Scholar 

  23. M.C. Şenel and M. Gurbuz, Investigation on mechanical properties and microstructure of B4C/graphene binary particles reinforced aluminum hybrid composites, Met. Mater. Int., 24(2021), p. 2438.

    Article  Google Scholar 

  24. C. Gode, Mechanical properties of hot pressed SiCp and B4Cp/Alumix 123 composites alloyed with minor Zr, Composites Part B, 54(2013), p. 34.

    Article  CAS  Google Scholar 

  25. A. Canakci, Microstructure and abrasive wear behaviour of B4C particle reinforced 2014 Al matrix composites, J. Mater. Sci., 46(2011), No. 8, p. 2805.

    Article  CAS  Google Scholar 

  26. C.S. Ramesh, R. Keshavamurthy, and G.J. Naveen, Effect of extrusion ratio on wear behaviour of hot extruded Al6061-SiCp (Ni-P coated) composites, Wear, 271(2011), No. 9–10, p. 1868.

    Article  CAS  Google Scholar 

  27. K.R. Suresh, H.B. Niranjan, P.M. Jebaraj, and M.P. Chowdiah, Tensile and wear properties of aluminum composites, Wear, 255(2003), No. 1–6, p. 638.

    Article  CAS  Google Scholar 

  28. G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1986.

    Google Scholar 

  29. M.C. Şenel and M. Gürbüz, Microstructure and wear behaviour of graphene-Si3N4 binary particle reinforced aluminium hybrid composites, Bull. Mater. Sci., 43(2020), No. 1, art. No. 148.

    Google Scholar 

  30. V.R. Rajeev, D.K. Dwivedi, and S.C. Jain, Effect of experimental parameters on reciprocating wear behavior of Al-Si-SiCp composites under dry condition, Tribol. Online, 4(2009), No. 5, p. 115.

    Article  Google Scholar 

  31. M.C. Şenel, M. Gürbüz, and E. Koç, Mechanical and tribological behaviours of aluminium matrix composites reinforced by graphene nanoplatelets, Mater. Sci. Technol., 34(2018), No. 16, p. 1980.

    Article  Google Scholar 

  32. K. Halil, O. İsmail, D. Sibel, and Ç. Ramazan, Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy, J. Mater. Res. Technol., 8(2019), No. 6, p. 5348.

    Article  CAS  Google Scholar 

  33. S. Jamale and B.V.M. Kumar, Sintering and sliding wear studies of B4C-SiC composites, Int. J. Refract. Met. Hater Mater., 87(2020), art. No. 105124.

  34. G.Y. Deng, A.K. Tieu, X.D. Lan, L.H. Su, L. Wang, Q. Zhu, and H.T. Zhu, Effects of normal load and velocity on the dry sliding tribological behaviour of CoCrFeNiMo0.2 high entropy alloy, Tribol. Int., 144(2020), art. No. 106116.

  35. Z. Wang, K. Georgarakis, W.W. Zhang, K.G. Prashanth, J. Eckert, and S. Scudino, Reciprocating sliding wear behavior of high-strength nanocrystalline Al84Ni7Gd6Co3 alloys, Wear, 382-383(2017), p. 78.

    Article  CAS  Google Scholar 

  36. V.R. Rajeev, D.K. Dwivedi, and S.C. Jain, Dry reciprocating wear of Al-Si-SiCp composites: A statistical analysis, Tribol. Int., 43(2010), No. 8, p. 1532.

    Article  CAS  Google Scholar 

  37. Y.Q. Liu, Z. Han, and H.T. Cong, Effects of sliding velocity and normal load on the tribological behavior of a nanocrystalline Al based composite, Wear, 268(2010), No. 7–8, p. 976.

    Article  CAS  Google Scholar 

  38. N.M. Kumar, S.S. Kumaran, and L.A. Kumaraswamidhas, Wear behaviour of Al 261 8 alloy reinforced with Si3N4, AlN and ZrB2 in situ composites at elevated temperatures, Alex. Eng. J., 55(2016), No. 1, p. 19.

    Article  Google Scholar 

  39. H.G.P. Kumar and M.A. Xavior, Fatigue and wear behavior of Al6061-graphene composites synthesized by powder metallurgy, Trans. Indian Inst.. Met., 69(2016), No. 2, p. 415.

    Article  CAS  Google Scholar 

Download references

Acknowledegements

The authors of this study thank Black Sea Advanced Technology Research and Application Center (KİTAM) in Ondokuz Mayıs University (OMU in Turkey) for SEM and XRD analysis and Hitit University Scientific and Technical Application and Research Center (HÜBTUAM in Turkey) for wear and friction testing and surface roughness measurement. This work was financially supported by the Scientific Researched Project Department of Ondokuz Mayıs University (No. PYO.MUH.1901.20.001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mevlüt Gürbüz.

Ethics declarations

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenel, M.C., Kanca, Y. & Gürbüz, M. Reciprocating sliding wear properties of sintered Al-B4C composites. Int J Miner Metall Mater 29, 1261–1269 (2022). https://doi.org/10.1007/s12613-020-2243-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2243-5

Keywords

Navigation