Skip to main content

Advertisement

Log in

Direct electrochemical reduction of copper sulfide in molten borax

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this study, for the first time, direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte. The effects of current density (100–800 mA/cm2) and electrolysis time (15–90 min) on both the cathodic current efficiency and copper yield were systematically investigated in consideration of possible electrochemical/chemical reactions at 1200°C. The copper production yield reached 98.09% after 90 min of electrolysis at a current density of 600 mA/cm2. Direct metal production was shown to be possible with 6 kWh/kg energy consumption at a 600 mA/cm2 current density, at which the highest current efficiency (41%) was obtained. The suggested method can also be applied to metal/alloy production from single- and mixed-metal sulfides coming from primary production and precipitated sulfides, which are produced in the mining and metallurgical industries during treatment of process solutions or wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Habashi, Handbook of Extractive Metallurg, Wiley-VCH, Weinheim, 1998, p. 491.

    Google Scholar 

  2. F. Habashi, Pollution problems in the metallurgical industry: A review, J. Min. Environ., 2(2011), No. 1, p. 17.

    Google Scholar 

  3. G.M. Li, D.H. Wang, X.B. Jin, and G.Z. Chen, Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission, Electrochem. Commun., 9(2007), No. 8, p. 1951.

    Article  Google Scholar 

  4. A. Vignes, Extractive Metallurgy 3: Processing Operations and Routes, John Wiley & Sons Inc., New Jersey, 2013, p. 265.

    Book  Google Scholar 

  5. A. Vignes, Extractive Metallurgy 2: Metallurgical Reaction Processe, John Wiley & Sons Inc., New Jersey 2013, p. 87.

    Book  Google Scholar 

  6. G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361.

    Article  Google Scholar 

  7. S.L. Wang, W. Wang, S.C. Li, and S.H. Cao, Cathodic behavior of molten CaCl2-CaO and CaCl2-NaCl-CaO, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 791.

    Article  Google Scholar 

  8. Z.Q. Li, L.Y. Ru, C.G. Bai, N. Zhang, and H.H. Wang, Effect of sintering temperature on the electrolysis of TiO2, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 636.

    Article  Google Scholar 

  9. Y. Liu, Y.A. Zhang, W. Wang, D.S. Li, and J.Y. Ma, Microstructure and electrolysis behavior of self-healing Cu-Ni-Fe composite inert anodes for aluminum electrowinning, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1208.

    Article  Google Scholar 

  10. H.P. Gao, M.S. Tan, L.B. Rong, Z.Y. Wang, J.J. Peng, X.B. Jin, and G.Z. Chen, Preparation of Mo nanopowders through electroreduction of solid MoS2 in molten KCl-NaCl, Phys. Chem. Chem. Phys., 16(2014), No. 36, p. 19514.

    Article  Google Scholar 

  11. Y. Xiao, D.W. van der Plas, J. Bohte, S.C. Lans, A. van Sandwijk, and M.A. Reuter, Electrowinning Al from Al2S3 in molten salt, J. Electrochem. Soc., 154(2007), No. 6, p. 334.

    Article  Google Scholar 

  12. T. Wang, H.P. Gao, X.B. Jin, H.L. Chen, J.J. Peng, and G.Z. Chen, Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl-KCl, Electrochem. Commun., 13(2011), No. 12, p. 1492.

    Article  Google Scholar 

  13. N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki, Reduction of TiS2 by OS process in CaCl2 melt, ECS Trans., 75(2016), No. 15, p. 507.

    Article  Google Scholar 

  14. T. Matsuzaki, S. Natsui, T. Kikuchi. and R.O. Suzuki, Electrolytic reduction of V3S4 in molten CaCl2, Mater. Trans., 58(2017), No. 3, p. 371.

    Article  Google Scholar 

  15. H.Y. Yin, B. Chung, and D.R. Sadoway, Electrolysis of a molten semiconductor, Nat. Commun., 7(2016), art. No. 12584.

  16. X.L. Ge, X.D. Wang, and S. Seetharaman, Copper extraction from copper ore by electro-reduction in molten CaCl2-NaCl, Electrochim. Acta, 54(2009), No. 18, p. 4397.

    Article  Google Scholar 

  17. X.L. Ge and S. Seetharaman, The salt extraction process — a novel route for metal extraction Part 2 — Cu/Fe extraction from copper oxide and sulphides, Miner. Process. Extr. Metall., 119(2010), No. 2, p. 93.

    Article  Google Scholar 

  18. S. Sokhanvaran, S.K. Lee, G. Lambotte, and A. Allanore, Electrochemistry of molten sulfides: copper extraction from BaS-Cu2S, J. Electrochem. Soc., 163(2016), No. 3, p. 115.

    Article  Google Scholar 

  19. S.K. Sahu, B. Chmielowiec, and A. Allanore, Electrolytic extraction of copper, molybdenum and rhenium from molten sulfide electrolyte, Electrochim. Acta, 243(2017), p. 382.

    Article  Google Scholar 

  20. M.S. Tan, R. He, Y.T. Yuan, Z.Y. Wang, and X.B. Jin, Electrochemical sulfur removal from chalcopyrite in molten NaCl-KCl, Electrochim. Acta, 213(2016), p. 148.

    Article  Google Scholar 

  21. K.S. Mohandas and D.J. Fray, Electrochemical deoxidation of solid zirconium dioxide in molten calcium chloride, Metall. Mater. Trans. B, 40(2009), No. 5, p. 685.

    Article  Google Scholar 

  22. S.L. Wang, S.C. Li, L.F. Wan, and C.H. Wang, Electro-deoxidation of V2O3 in molten CaCl2-NaCl-CaO, Int. J. Miner. Metall. Mater., 19(2012), No. 3, p. 212.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Karadeniz Bakir İşletmeleri A.Ş/Turkey for supplying white metal (Cu2S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Kartal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartal, L., Timur, S. Direct electrochemical reduction of copper sulfide in molten borax. Int J Miner Metall Mater 26, 992–998 (2019). https://doi.org/10.1007/s12613-019-1821-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1821-x

Keywords

Navigation