Skip to main content
Log in

Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite–spodumene ores

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The beneficiation methods for Ethiopian Kenticha pegmatite–spodumene ores were assessed through mineralogical and quantitative analyses with X-ray diffraction (XRD) and energy-dispersive X-ray fluorescence (EDXRF). The tantalite in the upper zone of the Kenticha pegmatite–spodumene deposit is 58.7wt% higher than that in the inner zone. XRD analysis revealed that the upper zone is dominated by manganocolumbite, whereas the inner zone is predominantly tantalite−Mn. Repeated cleaning and beneficiation of the upper-zone ore resulted in concentrate compositions of 57.34wt% of Ta2O5 and 5.41wt% of Nb2O5. Washing the tantalite concentrates using 1vol% KOH and 1 M H2SO4 led to the removal of thorium and uranium radioactive oxides from the concentrate. The findings of this study suggest that the beneficiation and alkaline washing of Kenticha pegmatite–spodumene ores produce a high-grade export-quality tantalite concentrate with negligible radioactive oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Baba, F.A. Adekola, O.I. Dele-Ige, and R.B. Bale, Investigation of dissolution kinetics of a Nigerian tantalite ore in nitric acid, J. Miner. Mater. Charact. Eng., 7(2007), No. 1, p. 83.

    Google Scholar 

  2. S. Bernstein, D. Frei, R.K. McLimans, C. Knudsen, and V.N. Vasudev, Application of CCSEM to heavy mineral deposits, Source of high-Ti ilmenite sand deposits of South Kerala beaches, SW India, J. Geochem. Explor., 96(2008), No. 1, p. 25.

    Article  Google Scholar 

  3. F. Melcher, T. Graupner, H.E. Gäbler, M. Sitnikova, F. Henjes-Kunst, T. Oberthür, A. Gerdes, and S. Dewaele, Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology, Ore Geol. Rev., 64(2015), p. 667.

    Article  Google Scholar 

  4. M.O.H. Amuda, D.E. Esezobor, and G.I. Lawal, Adaptable technologies for life-cycle processing of tantalum bearing minerals, J. Miner. Mater. Charact. Eng., 6(2007), No. 1, p. 69.

    Google Scholar 

  5. H.H. Htwe and K.T. Lwin, Study on extraction of niobium oxide from columbite–tantalite concentrate, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2(2008), No. 10, p. 223.

    Google Scholar 

  6. E.V. Badanina, M.A. Sitnikova, V.V. Gordienko, F. Melcher, H.-E. Gäbler, J. Lodziak, and L.F. Syritso, Mineral chemistry of columbite–tantalite from spodumene pegmatites of Kolmozero, Kola Peninsula (Russia), Ore Geol. Rev., 64(2015), p. 720.

    Article  Google Scholar 

  7. M. Van Lichtervelde, Rare-element pegmatites - from natural systems to the experimental lab, Mitt. Österr. Miner. Ges., 160(2014), p. 13.

    Google Scholar 

  8. H. Beurlen, A. Müller, D. Silva, and M.R.R. Da Silva, Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema Pegmatite Province, northeast Brazil, Mineral. Mag., 75(2011), No. 5, p. 2703.

    Article  Google Scholar 

  9. R.H. Mitchell, Primary and secondary niobium mineral deposits associated with carbonatites, Ore Geol. Rev., 64(2015), p. 626.

    Article  Google Scholar 

  10. F. Melcher, M.A. Sitnikova, T. Graupner, N. Martin, T. Oberthür, F. Henjes-Kunst, E. Gäbler, A. Gerdes, H. Brätz, D.W. Davis, and S. Dewaele, Fingerprinting of conflict minerals: columbite–tantalite (“coltan”) ores, SGA News, 2008, No. 23, p. 7.

    Google Scholar 

  11. A.L. Nikolaev, N.V. Kirichenko, and V.G. Maiorov, Niobium, tantalum, and titanium fluoride solutions, Russ. J. Inorg. Chem., 54(2009), No. 4, p. 505.

    Article  Google Scholar 

  12. A.R. Adetunji, W.O. Siyanbola, I.I. Funtua, S.O.O. Olusunle, A.A. Afonja, and O.O. Adewoye, Assessment of beneficiation routes of tantalite ores from key locations in Nigeria, J. Miner. Mater. Charact. Eng., 4(2005), No. 2, p. 85.

    Google Scholar 

  13. D. Küster, R.L. Romer, D. Tolessa, D. Zerihun, K. Bheemalingeswara, F. Melcher, and T. Oberthür, The Kenticha rare-element pegamtite, Ethiopia: internal differntiation, U–Pb age and Ta mineralization, Miner. Deposita, 44(2009), p. 723.

    Article  Google Scholar 

  14. E.J. Kim, S.Y. Kim, D.H. Moon, and S.M. Koh, Fractionation and rare-element mineralization of kenticha pegmatite, Southern Ethiopia, Econ. Environ. Geol., 46(2013), No. 5, p. 375.

    Article  Google Scholar 

  15. P. Cerný and T.S. Ercit, The classification of granitic pegmatites revisited, Can. Mineral., 43(2005), No. 6, p. 2005.

    Article  Google Scholar 

  16. M.S. Mohammedyasin, Geology, geochemistry and geochronology of the Kenticha rare metal granite pegmatite, Adola Belt, southern Ethiopia: a review, Int. J. Geosci., 8(2017), p. 46.

    Article  Google Scholar 

  17. S. Tadesse and D. Zerihun, Composition, fractionation trend and zoning accretion of the columbite–tantalite group of minerals in the Kenticha rare-metal field (Adola, southern Ethiopia), J. Afr. Earth Sci., 23(1996), No. 3, p. 411.

    Article  Google Scholar 

  18. R. Burt, Beneficiation of tantalum ore — how it is achieved and could it be better? [in] Proceedings of the 125th TMS Annual Meeting and Exhibition, Anaheim, CA, 1996, p. 17.

    Google Scholar 

  19. M. Nete, W. Purcell, and J.T. Nel, Separation and isolation of tantalum and niobium from tantalite using solvent extraction and ion exchange, Hydrometallurgy, 149(2014), p. 31.

    Article  Google Scholar 

  20. T.A. Theron, Quantification of Tantalum in Series of Tantalum-Containing Compounds [Dissertation], University of the Free State, Bloemfontein, 2010, p. 88.

    Google Scholar 

  21. O.M. El-Hussaini and M.A. Mahdy, Sulfuric acid leaching of Kab Amiri niobium–tantalum bearing minerals, Central Eastern Desert, Egypt, Hydrometallurgy, 64(2001), No. 3, p. 219.

    Article  Google Scholar 

  22. X.H. Wang, S.L. Zhang, H.B. Xu, and Y. Zhang, Dissolution behaviors of Ta2O5, Nb2O5 and their mixture in KOH and H2O system, Trans. Nonferrous Met. Soc. China, 20(2010), No. 10, p. 2006.

    Article  Google Scholar 

  23. O.M. EL-Husaini and M.N. EL-Hazek, Removal of radioactive elements from niobium and tantalum ores, Eur. J. Miner. Process. Environ. Prot., 5(2005), No. 1, p. 7.

    Google Scholar 

  24. M. Nete, F. Koko, T. Theron, W. Purcell, and J.T. Nel, Primary beneficiation of tantalite using magnetic separation and acid leaching, Int. J. Miner. Metall. Mater., 21(2014), No. 12, p. 1153.

    Article  Google Scholar 

  25. O.M. El-Hussaini and M.A. Mahdy, Extraction of niobium and tantalum from nitrate and sulfate media by using MIBK, Miner. Process. Extr. Metall. Rev., 22(2010), p. 633.

    Article  Google Scholar 

  26. P. Stratton and D. Henderson, Tantalum Market Overview, Minor Metals Trace Association, 2013 [2016-07-28]. http://www.mmta.co.uk/tantalum-marketoverview.

    Google Scholar 

  27. D.A.R. Mackay and G.J. Simandl, Niobium and tantalum: Geology, markets, and supply chains, [in] Symposium on Critical and Strategic Materials, Victoria, British Columbia, 2015, p. 13.

    Google Scholar 

  28. Geological Survey of Ethiopia, Tantalum—Key Mineral for Gadgets and Electronic Equipment, Mineral Resource of Ethiopia, 2010, No. 1, p. 1 [2015-12-10]. http://extra.geus.info/cet/ethiopia/EthiopienBlad_TANTALUM.pdf.

    Google Scholar 

  29. M.J. Kabangu and P.L. Crouse, Separation of niobium and tantalum from Mozambican tantalite by ammonium bifluoride digestion and octanol solvent extraction, Hydrometallurgy, 129-130(2012), p. 151.

    Article  Google Scholar 

  30. M. Nete, W. Purcell, E. Snyders, J.T. Nel, and G. Beukes, Characterization and alternative dissolution of tantalite mineral samples from Mozambique, J. South Afr. Inst. Min. Metall., 112(2011), No. 12, p. 1079.

    Google Scholar 

  31. X.H. Wang, S.L. Zheng, H.B. Xu, and Y. Zhang, Leaching of niobium and tantalum from a low-grade ore using a KOH roast–water leach system, Hydrometallurgy, 98(2009), No. 3-4, p. 219.

    Article  Google Scholar 

  32. H.M. Zhou, S.L. Zheng, Y. Zhang, and D.Q. Yi, A kinetic study of the leaching of a low-grade niobium–tantalum ore by concentrated KOH solution, Hydrometallurgy, 80(2005), No. 3, p. 170.

    Article  Google Scholar 

  33. D.A.R. Mackay and G.J. Simandl, Geology, market and supply chain of niobium and tantalum—a review, Miner. Deposita, 49(2014), p. 1025.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ethiopia Ministry of Mines, Petroleum and Natural Gas, Ethiopian Mineral Petroleum and Biofuel Corporation, Department of Materials Engineering of Adama Science and Technology University and for the grant by MU-HU-NORAD of Mekelle University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berhe Goitom Gebreyohannes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebreyohannes, B.G., del Rosario Alberto, V., Yimam, A. et al. Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite–spodumene ores. Int J Miner Metall Mater 24, 727–735 (2017). https://doi.org/10.1007/s12613-017-1456-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1456-8

Keywords

Navigation