Skip to main content
Log in

Thermodynamic analysis of the compositional control of inclusions in cutting-wire steel

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Data from a thermodynamic database and the calculation software FactSage were used to investigate the phase diagrams of the MnO-CaO-SiO2-Al2O3 system in cutting-wire steel and the effects of oxide components on the low-melting-point (LMP) zone in the corresponding phase diagrams. Furthermore, the activities of oxide components in the quaternary system at an Al2O3 content of 25wt% were calculated. The contents of dissolved [Al] and [O] in liquid steel in equilibrium with LMP inclusions in the MnO-CaO-SiO2-Al2O3 system were optimized. The results show that the MnO-CaO-SiO2-Al2O3 system possesses the largest LMP zone (below 1400°C) at an Al2O3 content of 25wt% and that the CaO content should be simultaneously controlled in the range of 40wt% to 45wt%. The activities of the oxide components CaO, MnO, and SiO2 should be restricted in the ranges of 0 to 0.05, 0.01 to 0.6, and 0.001 to 0.8, respectively. To obtain LMP inclusions, the [Al] and [O] contents in cutting-wire steel must be controlled within the ranges of 0.5 × 10−6 to 1.0 × 10−5 and 3.0 × 10−6 to 5.0 × 10−5, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Suito and R. Inoue, Thermodynamics on control of inclusions composition in ultra-clean steels, ISIJ Int., 36(1996), No. 5, p. 528.

    Article  Google Scholar 

  2. J.H. Liu, H.J. Wu, Y.P. Bao, and M. Wang, Inclusion variations and calcium treatment optimization in pipeline steel production, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 527.

    Article  Google Scholar 

  3. M. Gagné and E. Thibaultt, Control of inclusion characteristics in direct cast steel billets, Can. Metall. Q., 38(1999), No. 5, p. 311.

    Article  Google Scholar 

  4. L.F. Wang, X.J. Zhuo, J.M. Zhang, and X.H. Wang, Controlling inclusion composition in steelmaking process for tire cord steel, J. Univ. Sci. Technol. Beijing, 25(2003), No. 4, p. 308.

    Google Scholar 

  5. K. Kume, K. Morita, T. Miki, and N. Sano, Activity measurement of CaO-SiO2-AlO1.5-MgO slags equilibrated with molten silicon alloys, ISIJ Int., 40(2000), No. 6, p. 561.

    Article  Google Scholar 

  6. H.T. Wang, F.M. Wang, Z.B. Xu, and L.L. Jin, Composition control of CaO-MgO-Al2O3-SiO2 inclusion in tire cord steel: a thermodynamic analysis, Steel Res. Int., 79(2008), No. 1, p. 25.

    Google Scholar 

  7. H.G. Zheng and W.Q. Chen, Formation of CaO·TiO2-MgO·DAl2O3 dual phase inclusion in Ti stabilized stainless steel, J. Univ. Sci. Technol. Beijing, 13(2006), No. 1, p. 16.

    Article  Google Scholar 

  8. Y.B. Kang, H.S. Kim, J. Zhang, and H.G. Lee, Practical application of thermodynamics to inclusions engineer in steel, J. Phys. Chem. Solids, 66(2005), No. 2–4, p. 219.

    Article  Google Scholar 

  9. X.J. Zhuo, Y.Q. Wang, X.H. Wang, and H.G. Lee, Thermodynamic calculation and MnS solubility of Mn-Ti oxide formation in Si-Mn-Ti deoxidized steel, J. Iron Steel Res. Int., 17(2010), No. 2, p. 10.

    Article  Google Scholar 

  10. L.L. Jin, H.T. Wang, Z.B. Xu, and F.M. Wang, Control on low melting point area in a CaO-SiO2-Al2O3-MnO system, J. Univ. Sci. Technol. Beijing, 29(2007), No. 6, p. 574.

    Google Scholar 

  11. Y.B. Kang, I.H. Jung, S.A. Decterov, A.D. Pelton, and H.G. Lee, Critical thermodynamic evaluation and optimization of the CaO-MnO-SiO2 and CaO-MnO-Al2O3 systems, ISIJ Int., 44(2004), No. 6, p. 965.

    Article  Google Scholar 

  12. S.F. Wang and H. Ma, Effect of deformability of CaO-MgO-SiO2-Al2O3 series inclusion on breakage rate of tire cord steel in processing, Spec. Steel, 33(2012), No. 3, p. 32.

    Google Scholar 

  13. X.J. Zhuo, X.H. Wang, W.J. Wang, and H.G. Lee, Thermodynamic calculations and experiments on inclusions to be nucleation sites for intragranular ferrite in Si-Mn-Ti deoxidized steel, J. Univ. Sci. Technol. Beijing, 14(2007), No. 1, p. 14.

    Article  Google Scholar 

  14. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189.

    Article  Google Scholar 

  15. Y.B. Kang and H.G. Lee, Inclusions chemistry for Mn/Si deoxidized steels: thermodynamic predictions and experimental confirmations, ISIJ Int., 44(2004), No. 6, p. 1006.

    Article  Google Scholar 

  16. G.K. Sigworth and J.F. Elliott, The thermodynamics of liquid dilute iron alloys, Met. Sci., 8(1974), No. 1, p. 298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-ming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, Fm. & Li, Cr. Thermodynamic analysis of the compositional control of inclusions in cutting-wire steel. Int J Miner Metall Mater 21, 647–653 (2014). https://doi.org/10.1007/s12613-014-0953-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0953-2

Keywords

Navigation