Skip to main content
Log in

Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this work, the growth kinetics of MX (M = metal, X = C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitrides during long-term aging, experiments were performed at 700, 800, 850, and 900°C for different periods (1, 24, 70, and 100 h). The precipitation behavior of carbonitrides in specimens subjected to various aging conditions was explored using carbon replicas and transmission electron microscopy (TEM) observations. The corresponding sizes of MX carbonitrides were measured. The results demonstrates that MX carbonitrides precipitate in type 347H austenitic steel as Nb(C,N). The coarsening rate constant is time-independent; however, an increase in aging temperature results in an increase in coarsening rate of Nb(C,N). The coarsening process was analyzed according to the calculated diffusion activation energy of Nb(C,N). When the aging temperature was 800–900°C, the mean activation energy was 294 kJ·mol−1, and the coarsening behavior was controlled primarily by the diffusion of Nb atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Prat, J. Garcia, D. Rojas, J.P. Sanhueza, and C. Camurri, Study of nucleation, growth and coarsening of precipitates in a novel 9% Cr heat resistant steel: experimental and modeling, Mater. Chem. Phys., 143(2014), No. 2, p. 754.

    Article  Google Scholar 

  2. H. Chilukuru, K. Durst, S. Wadekar, M. Schwienheer, A. Scholz, C. Berger, K.H. Mayer, and W. Blum, Coarsening of precipitates and degradation of creep resistance in tempered martensite steels, Mater. Sci. Eng. A, 510-511(2009), p. 81.

    Article  Google Scholar 

  3. S.M. Hong, M.Y. Kim, D.J. Min, K.H. Lee, J.H. Shim, D.I. Kim, J.Y. Suh, W.S. Jung, and I.S. Choi, Unraveling the origin of strain-induced precipitation of M23C6 in the plastically deformed 347 austenite stainless steel, Mater. Charact., 94(2014), p. 7.

    Article  Google Scholar 

  4. H.B. Li, Z.H. Jiang, Z.R. Zhang, Y. Cao, and Y. Yang, Intergranular corrosion behavior of high nitrogen austenitic stainless steel, Int. J. Miner. Metall. Mater., 16(2009), No. 6, p. 654.

    Google Scholar 

  5. X.B. Hu, L. Li, X.C. Wu, and M. Zhang, Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium, Int. J. Fatigue, 28(2006), No. 3, p. 175.

    Article  Google Scholar 

  6. F.R. Xiao, Y.B. Cao, G.Y. Qiao, X.B. Zhang, and B. Liao, Effect of Nb solute and NbC precipitates on dynamic or static recrystallization in Nb steels, J. Iron Steel Res. Int., 19(2012), No. 11, p. 52.

    Article  Google Scholar 

  7. L. Tan, T.S. Byun, Y. Katoh, and L.L. Snead, Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation, Acta Mater., 71(2014), p. 11.

    Article  Google Scholar 

  8. Y.T. Xu, M.J. Wang, Y. Wang, T. Gu, L. Chen, X. Zhou, Q. Ma, Y.M. Liu, and J. Huang, Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging, J. Alloys Compd., 621(2015), p. 93.

    Article  Google Scholar 

  9. F. Shi, L.J. Wang, W.F. Cui, and C.M. Liu, Precipitation kinetics of Cr2N in high nitrogen austenitic stainless steel, J. Iron Steel Res. Int., 15(2008), No. 6, p. 72.

    Article  Google Scholar 

  10. N.Q. Zhu, L. Lu, Y.L. He, L. Li, and X.G. Lu, Coarsening of M23C6 precipitates in an Fe-Cr-C ternary alloy, J. Iron Steel Res. Int., 19(2012), No. 9, p. 62.

    Article  Google Scholar 

  11. Å. Gustafson and M. Hättestrand, Coarsening of precipitates in an advanced creep resistant 9% chromium steel: quantitative microscopy and simulations, Mater. Sci. Eng. A, 333(2002), No. 1-2, p. 279.

    Article  Google Scholar 

  12. Å. Gustafson, Coarsening of TiC in austenitic stainless steel: experiments and simulations in comparison, Mater. Sci. Eng. A, 287(2000), No. 1, p. 52.

    Article  Google Scholar 

  13. K. Miao, Y.L. He, N.Q. Zhu, J.J. Wang, X.G. Lu, and L. Li, Coarsening of carbides during different heat treatment conditions, J. Alloys Compd., 622(2015), p. 513.

    Article  Google Scholar 

  14. J.W. Bullard, Numerical simulations of transient-stage Ostwald ripening and coalescence in two dimensions, Mater. Sci. Eng. A, 238(1997), No. 1, p. 128.

    Article  Google Scholar 

  15. S. Ghosh, Kinetic study on the coarsening behaviour of equilibrium phases in Nb alloyed ferritic stainless steels at 700°C, Mater. Chem. Phys., 124(2010), No. 1, p. 13.

    Article  Google Scholar 

  16. O. Prat, J. Garcia, D. Rojas, C. Carrasco, and A.R. Kaysser-Pyzalla, Investigations on coarsening of MX and M23C6 precipitates in 12% Cr creep resistant steels assisted by computational thermodynamics, Mater. Sci. Eng. A, 527(2010), No. 21-22, p. 5976.

    Article  Google Scholar 

  17. J.N. Moon, H.C. Jeong, J.B. Lee, and C.H. Lee, Particle coarsening kinetics considering critical particle size in the presence of multiple particles in the heat-affected zone of a weld, Mater. Sci. Eng. A, 483-484(2008), No. 1-2, p. 633.

    Article  Google Scholar 

  18. S.G. Huang, R.L. Liu, L. Li, O. van der Biest, and J. Vleugels, NbC as grain growth inhibitor and carbide in WC-Co hardmetals, Int. J. Refract. Met. Hard Mater., 26(2008), No. 5, p. 389.

    Article  Google Scholar 

  19. H.B. Li, Z.H. Jiang, H. Feng, Q.F. Ma, and D.P. Zhan, Aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel and its influences on mechanical properties, J. Iron Steel Res. Int., 19(2012), No. 8, p. 43.

    Article  Google Scholar 

  20. M. Tsujikawa, N. Yamauchi, N. Ueda, T. Sone, and Y. Hirose, Behavior of carbon in low temperature plasma nitriding layer of austenitic stainless steel, Surf. Coat. Technol., 193(2005), No. 1-3, p. 309.

    Article  Google Scholar 

  21. H. Chilukuru, K. Durst, S. Wadekar, M. Schwienheer, A. Scholz, C. Berger, K.H. Mayer, and W. Blum, Coarsening of precipitates and degradation of creep resistance in tempered martensite steels, Mater. Sci. Eng. A, 510-511(2009), p. 81.

    Article  Google Scholar 

  22. Z.X. Xia, C. Zhang, and Z.G. Yang, Control of precipitation behavior in reduced activation steels by intermediate heat treatment, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 6764.

    Article  Google Scholar 

  23. K. Sawada, K. Kubo, and F. Abe, Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel, Mater. Sci. Eng. A, 319-321(2001), p. 784.

    Article  Google Scholar 

  24. M. Tamura, H. Sakasegawa, A. Kohyama, H. Esaka, and K. Shinozuka, Creep deformation of iron strengthened by MX type particles, J. Nucl. Mater., 329(2004), No. 1, p. 328.

    Article  Google Scholar 

  25. M. Tamura, H. Sakasegawa, A. Kohyama, H. Esaka, and K. Shinozuka, Effect of MX type particles on creep strength of ferritic steel, J. Nucl. Mater., 321(2003), No. 2-3, p. 288.

    Article  Google Scholar 

  26. T. Onizawa, T. Wakai, M. Ando, and K. Aoto, Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel, Nucl. Eng. Des., 238(2008), No. 2, p. 408.

    Article  Google Scholar 

  27. O. Prat, J. Garcia, D. Rojas, C. Carrasco, and A.R. Kaysser-Pyzalla, Investigations on coarsening of MX and M23C6 precipitates in 12% Cr creep resistant steels assisted by computational thermodynamics, Mater. Sci. Eng. A, 527(2010), No. 21-22, p. 5976.

    Article  Google Scholar 

  28. J. A. gren, A revised expression for the diffusivity of carbon in binary FeC austenite, Scripta Metall. Mater., 20(1986), No. 11, p. 1507.

    Article  Google Scholar 

  29. G.P. Krielaart and S. van der Zwaag, Kinetics of λ-a phase transformation in Fe-Mn alloys containing low manganese, Mater. Sci. Technol., 14(1998), No. 1, p. 10.

    Article  Google Scholar 

  30. W.F. Gale and T.C. Totemeir, Smithells Metals Reference Book, 8th Ed., Elsevier Butterworth-Heinemann, Waltham Massachusetts (United States), 2004, p. 13.

    Google Scholar 

  31. M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole, In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel, Acta Mater., 60(2012), No. 3, p. 1015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-chang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Yh., Liu, Cx., Liu, Yc. et al. Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging. Int J Miner Metall Mater 23, 283–293 (2016). https://doi.org/10.1007/s12613-016-1237-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1237-9

Keywords

Navigation