Skip to main content
Log in

Molten salt synthesis of mullite nanowhiskers using different silica sources

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Mullite nanowhiskers with Al-rich structure were prepared by molten salt synthesis at 1000°C for 3 h in air using silica, amorphous silica, and ultrafine silica as the silica sources. The phase and morphology of the synthesized products were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy. A thermogravimetric and differential thermal analysis was carried out to determine the reaction mechanism. The results reveal that the silica sources play an important role in determining the morphology of the obtained mullite nanowhiskers. Clusters and disordered arrangements are obtained using common silica and amorphous silica, respectively, whereas the use of ultrafine silica leads to highly ordered mullite nanowhiskers that are 80−120 nm in diameter and 20−30 μm in length. Considering the growth mechanisms, mullite nanowhiskers in the forms of clusters and highly ordered arrangements can be attributed to heterogeneous nucleation, whereas disordered mullite nanowhiskers are obtained by homogenous nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wang, G. McCool, N. Kapur, G. Yuan, B. Shan, M. Nguyen, U.M. Graham, B.H. Davis, G. Jacobs, K. Cho, and X.K. Hao, Mixed-phase oxide catalyst based on Mn-Mullite (Sm, GD) Mn2O5 for NO oxidation in diesel exhaust, Science, 337(2012), No. 6096, p. 832.

    Article  Google Scholar 

  2. S. Tian, Q. Zhou, C.H. Li, Z.M. Gu, J.R. Lombardi, and J.W. Zheng, Exploring the chemical enhancement of surface-enhanced raman scattering with a designed silver/Silica cavity substrate. J. Phys. Chem. C, 117(2012), No. 1, p. 556.

    Article  Google Scholar 

  3. X.M. Qian, X.H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, and S.M. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags, Nat. Biotechnol., 26(2008), No. 1, p. 83.

    Article  Google Scholar 

  4. F. Casadio, M. Leona, J.R. Lombardi, and R. Van Duyne. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy, Acc. Chem. Res., 43(2010), No. 6, p. 782.

    Article  Google Scholar 

  5. J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, and Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature, 464(2010), No. 7284, p. 392.

    Article  Google Scholar 

  6. A.M. Schwartzberg, C.D. Grant, A. Wolcott, C.E. Talley, T.R. Huser, R. Bogomolni, and J.Z. Zhang, Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate, J. Phys. Chem. B, 108(2004), No. 50, p. 19191.

    Article  Google Scholar 

  7. S. Sasic, T. Itoh, and Y. Ozaki, Detailed analysis of single- molecule surface-enhanced resonance Raman scattering spectra of Rhodamine 6G obtained from isolated nano-aggregates of colloidal silver, J. Raman Spectrosc., 36(2005), No. 6-7, p. 593.

    Article  Google Scholar 

  8. I. Yoon, T. Kang, W. Choi, J. Kim, Y. Yoo, S.W. Joo, Q.H. Park, H. Ihee, and B. Kim, Single nanowire on a film as an efficient SERS-active platform, J. Am. Ceram. Soc., 131(2008), No. 2, p. 758.

    Google Scholar 

  9. Y.B. Zhang, Y.P. Ding, J.Q. Gao, and J.F. Yang. Mullite fibres prepared by sol-gel method using polyvinyl butyral, J. Eur. Ceram. Soc., 29(2009), No. 6, p. 1101.

    Article  Google Scholar 

  10. B. Bagchi, S. Das, A. Bhattacharya, R. Basu, and P. Nandy, Nanocrystalline mullite synthesis at a low temperature: effect of copper ions, J. Am. Ceram. Soc., 92(2009), No. 3, p. 748.

    Article  Google Scholar 

  11. L.B. Kong, T.S. Zhang, J. Ma, and F.Y.C. Boey, Mullitization behavior and microstructural development of B2O3-Al2O3-SiO2 mixtures activated by high-energy ball milling, Solid State Sci., 11(2009), No. 8, p. 1333.

    Article  Google Scholar 

  12. T.S. Zhang, L.B. Kong, Z.H. Du, J. Ma, and S. Li, In situ interlocking structure in gel-derived mullite matrix induced by mechanoactivated commercial mullite powders, Scripta Mater., 63(2010), No. 11, p. 1132.

    Article  Google Scholar 

  13. T.S. Zhang, L.B. Kong, Z.H. Du, J. Ma, and S. Li, Tailoring the microstructure of mechanoactivated Al2O3 and SiO2 mixtures with TiO2 addition, J. Alloys Compd., 506(2010), No. 2, p. 777.

    Article  Google Scholar 

  14. J.F. Li, H. Lin, J.B. Li, and J. Wu. Effects of different potassium salts on the formation of mullite as the only crystal phase in kaolinite, J. Eur. Ceram. Soc., 29(2009), No. 14, p. 2929.

    Article  Google Scholar 

  15. S. Okada, T. Shishido, T. Mori, K. Iizumi, K Kudou, and K. Nakajima, Crystal growth of MgAlB14-type compounds using metal salts and some properties, J. Alloys Compd., 458(2008), No. 1, p. 297.

    Article  Google Scholar 

  16. Y.M. Park, T.Y. Yang, S.Y. Yoon, R. Stevens, and H.C. Park, Mullite whiskers derived from coal fly ash, Mater. Sci. Eng. A, 454(2007), p. 518.

    Article  Google Scholar 

  17. P.Y. Zhang, J.C. Liu, H.Y. Du, Z.Q. Li, S. Li, S. Li, and R. Xu, Molten salt synthesis of mullite whiskers from various alumina precursors, J. Alloys Compd., 491(2010), No. 1, p. 447.

    Article  Google Scholar 

  18. R. El Ouatib, S. Guillemet, B. Durand, A. Samdi, L. Er Rakho, and R. Moussa, Reactivity of aluminum sulfate and silica in molten alkali-metal sulfates in order to prepare mullite, J. Eur. Ceram. Soc., 25(2005), No. 1, p. 73.

    Article  Google Scholar 

  19. L.B. Kong, Y.B. Gan, J. Ma, T.S. Zhang, F. Boey, and R.F. Zhang, Mullite phase formation and reaction sequences with the presence of pentoxides, J. Alloys Compd., 351(2003), No. 1, p. 264.

    Article  Google Scholar 

  20. B.M. Kim, Y.K. Cho, S.Y. Yoon, R. Stevens, and H.C. Park, Mullite whiskers derived from kaolin, Ceram. Int., 35(2009), No. 2, p. 579.

    Article  Google Scholar 

  21. P.Y. Zhang, J.C. Liu, H.Y. Du, Z.Q. Li, S. Li, and C. Chen. Influence of silica sources on morphology of mullite whiskers in Na2SO4 flux, J. Alloys Compd., 484(2009), No. 1, p. 580.

    Article  Google Scholar 

  22. E.M. Levin and H.F. McMurdie, Phase Diagrams for Ceramists 1975 Supplement, American Ceramic Society, Inc., Columbus, OH, 1975, p. 318.

    Google Scholar 

  23. B. Zhu, X. Li, R. Hao, and H. Wang, Thermodynamics study on mullite preparation in molten sodium sulfate. J. Chin. Ceram. Soc., 34(2006), No. 1, p. 76.

    Google Scholar 

  24. X.H. Huang, J.L. Liao, K. Zheng, H.H. Hu, F.M. Wang, Z.T. Zhang, Effect of B2O3 addition on viscosity of mould slag containing low silica content, Ironmaking Steekmaking, 41(2014), No. 1, p. 67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai-jun Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Qiu, Pl., Zhang, M. et al. Molten salt synthesis of mullite nanowhiskers using different silica sources. Int J Miner Metall Mater 22, 884–891 (2015). https://doi.org/10.1007/s12613-015-1146-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1146-3

Keywords

Navigation