Skip to main content
Log in

Properties of a reaction-bonded β-SiAlON ceramic doped with an FeMo alloy for application to molten aluminum environments

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

An FeMo-alloy-doped β-SiAlON (FeMo/β-SiAlON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, AlN, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical properties of the composite were investigated. Some properties of the composite, including its bending strength at 700°C and after oxidization at 700°C for 24 h in air, thermal shock resistance and corrosion resistance to molten aluminum, were also evaluated. The results show that the density, toughness, bending strength, and thermal shock resistance of the composite are obviously improved with the addition of an FeMo alloy. In addition, other properties of the composite such as its high-temperature strength and oxidized strength are also improved by the addition of FeMo alloy, and its corrosion resistance to molten aluminum is maintained. These findings indicate that the developed FeMo/β-SiAlON composite exhibits strong potential for application to molten aluminum environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.H. Jack, Sialons and related nitrogen ceramics, J. Mater. Sci., 11(1976), No. 6, p. 1135.

    Article  Google Scholar 

  2. A.R. Bahramian, M. Kokabi, and F.P. Soorbaghi, Carbon fiber reinforced β-SiAlON for ultra high temperature ablative heat shields, Int. J. Appl. Ceram. Technol., 10(2013), No. 2, p. 203.

    Article  Google Scholar 

  3. F. Çaliskan, Z. Tatli, A. Genson, and S. Hampshire, Pressureless sintering of β-SiAlON ceramic compositions using fluorine and oxide additive system, J. Eur. Ceram. Soc., 32(2012), No. 7, p. 1337.

    Article  Google Scholar 

  4. X.M. Hou, X. Lu, B. Peng, B.J. Zhao, M. Zhang, and K.C. Chou, A new approach to interpreting the parabolic and non-parabolic oxidation behaviour of hot-pressed β-SiAlON ceramics, Corros. Sci., 58(2012), p. 278.

    Article  Google Scholar 

  5. H. Hyuga, K. Yoshida, N. Kondo, H. Kita, J. Sugai, H. Okano, and J. Tsuchida, Fabrication of pressureless sintered dense β-SiAlON via a reaction-bonding route with ZrO2 addition, Ceram. Int., 35(2009), No. 5, p. 1927.

    Article  Google Scholar 

  6. F.L. Riley, Silicon nitride and related materials, J. Am. Ceram. Soc., 83(2000), No. 2, p. 245.

    Article  Google Scholar 

  7. V.A. Izhevskiy, L.A. Genova, J.C. Bressiani, and F. Aldinger, Progress in SiAlON ceramics, J. Eur. Ceram. Soc., 20(2000), No. 13, p. 2275.

    Article  Google Scholar 

  8. T. Ekström and M. Nygren, SiAlON ceramics, J. Am. Ceram. Soc., 75(1992), No. 2, p. 259.

    Article  Google Scholar 

  9. H. Banno, T. Asaka, and K. Fukuda, Electron density distribution and disordered crystal structure of 8H-SiAlON, Si3−xAl1+xOxN5−x (x~2.2), J. Solid State Chem., 213(2014), p. 169.

    Article  Google Scholar 

  10. B. Joshi, H.H. Lee, H. Wang, Z.Y. Fu, K. Niihara, and S.W. Lee, The effect of different rare earth oxides on mechanical and optical properties of hot pressed α/β-sialon ceramics, J. Eur. Ceram. Soc., 32(2012), No. 13, p. 3603.

    Article  Google Scholar 

  11. I. Ganesh, N. Thiyagarajan, D.C. Jana, Y.R. Mahajan, and G. Sundararajan, Influence of chemical composition and Y2O3 on sinterability, dielectric constant, and CTE of β-SiAlON, J. Am. Ceram. Soc., 91(2008), No. 1, p. 115.

    Article  Google Scholar 

  12. O. Eser and S. Kurama, A comparison of sintering techniques using different particle sized β-SiAlON powders, J. Eur. Ceram. Soc., 32(2012), No. 7, p. 1343.

    Article  Google Scholar 

  13. J.F. Yang, G.J. Zhang, J.H. She, T. Ohji, and S. Kanzaki, Improvement of mechanical properties and corrosion resistance of porous β-SiAlON ceramics by low Y2O3 additions, J. Am. Ceram. Soc., 87(2004), No. 9, p. 1714.

    Article  Google Scholar 

  14. T. Ekström, P.O. Käll, M. Nygren, and P.O. Olsson, Dense single-phase β-sialon ceramics by glass-encapsulated hot isostatic pressing, J. Mater. Sci., 24(1989), No. 5, p. 1853.

    Article  Google Scholar 

  15. Z.H. Huang, J.Z. Yang, Y.G. Liu, M.H. Fang, J.T. Huang, H.R. Sun, and S.F. Huang, Novel sialon-based ceramics toughened by ferro-molybdenum alloy, J. Am. Ceram. Soc., 95(2012), No. 3, p. 859.

    Google Scholar 

  16. J.Z. Yang, Z.H. Huang, M.H. Fang, Y.G. Liu, J.T. Huang, and J.H. Hu, Preparation and mechanical properties of Fe/Mo-Sialon ceramic composites, Scripta Mater., 61(2009), No. 6, p. 632.

    Article  Google Scholar 

  17. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements, J. Am. Ceram. Soc., 64(1981), No. 9, p. 533.

    Article  Google Scholar 

  18. N.C. Acikbas, S. Tegmen, S. Ozcan, and G. Acikbas, Thermal shock behaviour of a:β-SiAlON-TiN composites, Ceram. Int., 40(2014), No. 2, p. 3611.

    Article  Google Scholar 

  19. P. Pettersson, M. Johnsson, and Z. Shen, Parameters for measuring the thermal shock of ceramic materials with an indentation-quench method, J. Eur. Ceram. Soc., 22(2002), No. 11, p. 1883.

    Article  Google Scholar 

  20. P. Pettersson, Z. Shen, M. Johnsson, and M. Nygren, Thermal shock properties of β-sialon ceramics, J. Eur. Ceram. Soc., 22(2002), No. 8, p. 1357.

    Article  Google Scholar 

  21. M. Collin and D. Rowcliffe, Analysis and prediction of thermal shock in brittle materials, Acta Mater., 48(2000), No. 8, p. 1655.

    Article  Google Scholar 

  22. W. Song, J.L. Sun, Y. Li, and J.H. Chen, Effect of synthesis process on phase composition and structure of ferro-silicon nitride, J. Chin. Ceram. Soc., 38(2010), No. 7, p. 1281.

    Google Scholar 

  23. S.J. Zhu, J.L. Sun, and Y.R. Hong, Computer simulation of flash combustion synthesis of ferro-silicon nitride, Refractories, 39(2005), No. 4, p. 274.

    Google Scholar 

  24. F. Weitzer and J.C. Schuster, Phase diagrams of the ternary systems Mn, Fe, Co, Ni-Si-N, J. Solid State Chem., 70(1987), No. 2, p. 178.

    Article  Google Scholar 

  25. S. Singh, M.M. Godkhindi, R.V. Krishnarao, and B.S. Murty, Synthesis of Si3N4-MoSi2 in situ composite from mechanically activated (Mo+Si3N4) powders, J. Alloys Compd., 381(2004), No. 1–2, p. 254.

    Article  Google Scholar 

  26. R.M. Spriggs, Expression for effect of porosity on elastic modulus of polycrystalline refactory materials, particularly aluminium oxide, J. Am. Ceram. Soc., 44(1961), No. 12, p. 628.

    Article  Google Scholar 

  27. L.S. Wang, Z.F. Zhang, Y. Fan, and B.Y. Yin, Influence of sintering aids on pressureless sintering of sialon ceramics, Chin. J. Nonferrous Met., 11(2001), No. 3, p. 386.

    Google Scholar 

  28. L.S. Wang, Y.C. Wang, Y. Fan, and F. Wu, The pressureless sintering of sialon ceramics, J. Cent. South Univ. Technol. Nat. Sci., 32(2001), No. 3, p. 277.

    Google Scholar 

  29. R.M. German, P. Suri, and S.J. Park, Review: liquid phase sintering, J. Mater. Sci., 44(2009), No. 1, p. 1.

    Article  Google Scholar 

  30. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, Wiley-Interscience, New York, USA, 1976.

    Google Scholar 

  31. M. Madhan and G. Prabhakaran, Self-healing ability of structural ceramics: a review, Trends Intell. Rob. Autom. Manuf., 330(2012), p. 466.

    Article  Google Scholar 

  32. W. Nakao, S. Mori, J. Nakamura, K. Takahashi, K. Ando, and M. Yokouchi, Self-crack-healing behavior of mullite/SiC particle/SiC whisker multi-composites and potential use for ceramic springs, J. Am. Ceram. Soc., 89(2006), No. 4, p. 1352.

    Article  Google Scholar 

  33. Y.H. Zhang, L. Edwards, and W.J. Plumbridge, Crack healing in a silicon nitride ceramic, J. Am. Ceram. Soc., 81(1998), No. 7, p. 1861.

    Article  Google Scholar 

  34. Y.H. Zhang and L. Edwards, Cyclic fatigue crack growth behaviour of silicon nitride at 1400°C, Mater. Sci. Eng. A, 256(1998), No. 1–2, p. 144.

    Article  Google Scholar 

  35. D.P.H. Hasselman, Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics, J. Am. Ceram. Soc., 52(1969), No. 11, p. 600.

    Article  Google Scholar 

  36. Y. Yu, J.G. Cheng, L. Wan, B. Liang, and J. Liu, Fabrication and properties of Al/AlN composites by a pressureless infiltration process, Acta Mater. Compos. Sin., 28(2011), No. 6, p. 166.

    Google Scholar 

  37. Y.L. Shen, Thermal expansion of metal-ceramic composites: a three-dimensional analysis, Mater. Sci. Eng. A, 252(1998), No. 2, p. 269.

    Article  Google Scholar 

  38. C. dos Santos, S. Ribeiro, K. Strecker, and C.R.M. da Silva, Characterization of Si3N4-Al interface after corrosion tests, Cerâmica, 49(2003), No. 312, p. 223.

    Article  Google Scholar 

  39. L. Mouradoff, P. Tristant, J. Desmaison, J.C. Labbe, M. Desmaison-Brut, and R. Rezakhanlou, Interaction between liquid aluminium and non-oxide ceramics (AlN, Si3N4, SiC), Key Eng. Mater., 113(1996), p. 177.

    Article  Google Scholar 

  40. G.C. Li, X.S. Ning, K.X. Chen, and H.P. Zhou, Interaction of Si3N4 ceramics and liquid aluminum at interface without oxidation, Rare Met. Mater. Eng., 38(2009), No. z2, p. 186.

    Google Scholar 

  41. C. Chatillon, L. Coudurier, and N. Eustathopoulos, Stability of oxide films on liquid metals under vacuum: influence on wetting of metals on ceramic surfaces, Mater. Sci. Forum, 251–254(1997), p. 701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-yun Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yj., Yu, Hl., Jin, Hy. et al. Properties of a reaction-bonded β-SiAlON ceramic doped with an FeMo alloy for application to molten aluminum environments. Int J Miner Metall Mater 22, 530–536 (2015). https://doi.org/10.1007/s12613-015-1103-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1103-1

Keywords

Navigation