Skip to main content

Advertisement

Log in

Surgery for Lymphedema Prevention and Treatment

  • Review
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review explores the evidence surrounding the efficacy of preventing and treating lymphedema through surgical means.

Recent Findings

Sentinel Lymph Node Biopsy (SLNB) has significantly reduced the need for axillary lymph node dissection (ALND), decreasing lymphedema rates. Axillary Reverse Mapping (ARM) techniques offer the opportunity to identify and preserve lymphatics during surgery. Immediate lymphatic reconstruction through lymphatic or lymphatic venous anastomosis and free lymph node transfer attempt to maintain continued post-operative lymphatic flow, further mitigating BCRL risks and optimizing patient outcomes.

Summary

A growing body of data is evaluating surgical techniques for lymphedema prevention and treatment. Improvements in patients’ quality of life have been reported with these techniques. Further research should focus on randomized controlled trials and prospective studies to investigate patient indications, technique selection, long-term durability, and personalized patient strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Giaquinto AN, Sung H, Miller KD, et al. Breast Cancer Statistics, 2022. CA Cancer J Clin. 2022;72(6):524–41. https://doi.org/10.3322/caac.21754.

    Article  PubMed  Google Scholar 

  3. Yi M, Li T, Niu M, Luo S, Chu Q, Wu K. Epidemiological trends of women's cancers from 1990 to 2019 at the global, regional, and national levels: a population-based study. Biomark Res. 2021;9(1):55. https://doi.org/10.1186/s40364-021-00310-y.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–75. https://doi.org/10.1016/s0140-6736(17)33326-3.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Qiu H, Cao S, Xu R. Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020. Cancer Commun (Lond). 2021;41(10):1037–48. https://doi.org/10.1002/cac2.12197.

    Article  PubMed  Google Scholar 

  6. Trapani D, Ginsburg O, Fadelu T, et al. Global challenges and policy solutions in breast cancer control. Cancer Treat Rev. 2022;104:102339. https://doi.org/10.1016/j.ctrv.2022.102339.

    Article  PubMed  Google Scholar 

  7. Kedar DJ, Yanko R, Barnea Y, Inbal A, Fliss E, Zaretski A. Breast cancer-related lymphedema: incidence and risk factors, preventive measures and treatments. Harefuah. 2022;161(2):115–20.

    PubMed  Google Scholar 

  8. Shih YC, Xu Y, Cormier JN, et al. Incidence, treatment costs, and complications of lymphedema after breast cancer among women of working age: a 2-year follow-up study. J Clin Oncol. 2009;27(12):2007–14. https://doi.org/10.1200/jco.2008.18.3517.

    Article  PubMed  Google Scholar 

  9. Gillespie TC, Sayegh HE, Brunelle CL, Daniell KM, Taghian AG. Breast cancer-related lymphedema: risk factors, precautionary measures, and treatments. Gland Surg. 2018;7(4):379–403. https://doi.org/10.21037/gs.2017.11.04s.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McLaughlin SA, Brunelle CL, Taghian A. Breast cancer-related lymphedema: risk factors, screening, management, and the impact of locoregional treatment. J Clin Oncol. 2020;38(20):2341–50. https://doi.org/10.1200/jco.19.02896.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Johnson AR, Kimball S, Epstein S, et al. Lymphedema incidence after axillary lymph node dissection: quantifying the impact of radiation and the lymphatic microsurgical preventive healing approach. Ann Plast Surg. 2019;82(4S Suppl 3):S234–s241. https://doi.org/10.1097/sap.0000000000001864.

    Article  CAS  PubMed  Google Scholar 

  12. Lee KT, Bang SI, Pyon JK, Hwang JH, Mun GH. Method of breast reconstruction and the development of lymphoedema. Br J Surg. 2017;104(3):230–7. https://doi.org/10.1002/bjs.10397.

    Article  PubMed  Google Scholar 

  13. Shen A, Lu Q, Fu X, et al. Risk factors of unilateral breast cancer-related lymphedema: an updated systematic review and meta-analysis of 84 cohort studies. Support Care Cancer. 2022;31(1):18. https://doi.org/10.1007/s00520-022-07508-2.

    Article  PubMed  Google Scholar 

  14. Shah C, Arthur D, Riutta J, Whitworth P, Vicini FA. Breast-cancer related lymphedema: a review of procedure-specific incidence rates, clinical assessment AIDS, treatment paradigms, and risk reduction. Breast J. 2012;18(4):357–61. https://doi.org/10.1111/j.1524-4741.2012.01252.x.

    Article  PubMed  Google Scholar 

  15. Macadam SA, Zhong T, Weichman K, et al. Quality of life and patient-reported outcomes in breast cancer survivors: a multicenter comparison of four abdominally based autologous reconstruction methods. Plast Reconstr Surg. 2016;137(3):758–71. https://doi.org/10.1097/01.prs.0000479932.11170.8f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu MR, Ridner SH, Hu SH, Stewart BR, Cormier JN, Armer JM. Psychosocial impact of lymphedema: a systematic review of literature from 2004 to 2011. Psychooncology. 2013;22(7):1466–84. https://doi.org/10.1002/pon.3201.

    Article  PubMed  Google Scholar 

  17. Cheng MH, Ho OA, Tsai TJ, Lin YL, Kuo CF. Breast cancer-related lymphedema correlated with incidence of cellulitis and mortality. J Surg Oncol. 2022;126(7):1162–8. https://doi.org/10.1002/jso.27054.

    Article  CAS  PubMed  Google Scholar 

  18. • Jørgensen MG, Hermann AP, Madsen AR, et al. Cellulitis is associated with severe breast cancer-related lymphedema: an observational study of tissue composition. Cancers (Basel). 2021;13(14) https://doi.org/10.3390/cancers13143584sThis study on 206 unilateral Breast Cancer-Related Lymphedema patients finds that cellulitis is linked to increased fat and lean mass in the affected limb, with patient BMI affecting fat mass distribution.

  19. • Engin O, Sahin E, Saribay E, Dilek B, Akalin E. Risk factors for developing upper limb cellulitis after breast cancer treatment. Lymphology. 2022;55(2):77–83. This research on 523 breast cancer patients found that bigger limb sizes, longer lymphedema, and less education raise the risk of cellulitis. Main factors are lymphedema, its duration, radiotherapy, and education. Managing lymphedema early is key to avoid cellulitis.

  20. Slaghmuylder Y, Pype P, Van Hecke A, Lauwerier E. Development of an intervention aimed at the prevention and treatment of chronic pain in breast cancer survivors: an intervention mapping approach. Patient Educ Couns. 2023;108:107618. https://doi.org/10.1016/j.pec.2022.107618.

    Article  PubMed  Google Scholar 

  21. McEvoy MP, Ravetch E, Patel G, Fox J, Feldman S. Prevention of breast cancer-related lymphedema. Clin Breast Cancer. 2021;21(2):128–42. https://doi.org/10.1016/j.clbc.2021.02.009.

    Article  PubMed  Google Scholar 

  22. DeSnyder SM, Yi M, Boccardo F, et al. American Society of Breast Surgeons’ practice patterns for patients at risk and affected by breast cancer-related lymphedema. Ann Surg Oncol. 2021;28(10):5742–51. https://doi.org/10.1245/s10434-021-10494-0.

    Article  PubMed  Google Scholar 

  23. Shah C, Arthur DW, Wazer D, Khan A, Ridner S, Vicini F. The impact of early detection and intervention of breast cancer-related lymphedema: a systematic review. Cancer Med. 2016;5(6):1154–62. https://doi.org/10.1002/cam4.691.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shah C, Zambelli-Weiner A, Delgado N, Sier A, Bauserman R, Nelms J. The impact of monitoring techniques on progression to chronic breast cancer-related lymphedema: a meta-analysis comparing bioimpedance spectroscopy versus circumferential measurements. Breast Cancer Res Treat. 2021;185(3):709–40. https://doi.org/10.1007/s10549-020-05988-6.

    Article  PubMed  Google Scholar 

  25. Zasadzka E, Trzmiel T, Kleczewska M, Pawlaczyk M. Comparison of the effectiveness of complex decongestive therapy and compression bandaging as a method of treatment of lymphedema in the elderly. Clin Interv Aging. 2018;13:929–34. https://doi.org/10.2147/cia.S159380.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bergmann A, Baiocchi JMT, de Andrade MFC. Conservative treatment of lymphedema: the state of the art. J Vasc Bras. 2021;20:e20200091. https://doi.org/10.1590/1677-5449.200091.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dean LT, Moss SL, Ransome Y, et al. “It still affects our economic situation”: long-term economic burden of breast cancer and lymphedema. Support Care Cancer. 2019;27(5):1697–708. https://doi.org/10.1007/s00520-018-4418-4.

    Article  PubMed  Google Scholar 

  28. Dean LT, Ransome Y, Frasso-Jaramillo L, et al. Drivers of cost differences between US breast cancer survivors with or without lymphedema. J Cancer Surviv. 2019;13(5):804–14. https://doi.org/10.1007/s11764-019-00799-1.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Basta MN, Fox JP, Kanchwala SK, et al. Complicated breast cancer-related lymphedema: evaluating health care resource utilization and associated costs of management. Am J Surg. 2016;211(1):133–41. https://doi.org/10.1016/j.amjsurg.2015.06.015.

    Article  PubMed  Google Scholar 

  30. Omidi Z, Kheirkhah M, Abolghasemi J, Haghighat S. Effect of lymphedema self-management group-based education compared with social network-based education on quality of life and fear of cancer recurrence in women with breast cancer: a randomized controlled clinical trial. Qual Life Res. 2020;29(7):1789–800. https://doi.org/10.1007/s11136-020-02455-z.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shaitelman SF, Chiang YJ, Griffin KD, et al. Radiation therapy targets and the risk of breast cancer-related lymphedema: a systematic review and network meta-analysis. Breast Cancer Res Treat. 2017;162(2):201–15. https://doi.org/10.1007/s10549-016-4089-0.

    Article  CAS  PubMed  Google Scholar 

  32. Naoum GE, Roberts S, Brunelle CL, et al. Quantifying the impact of axillary surgery and nodal irradiation on breast cancer-related lymphedema and local tumor control: long-term results from a prospective screening trial. J Clin Oncol. 2020;38(29):3430–8. https://doi.org/10.1200/jco.20.00459.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Noguchi M, Inokuchi M, Noguchi M, Morioka E, Ohno Y, Kurita T. Axillary surgery for breast cancer: past, present, and future. Breast Cancer. 2021;28(1):9–15. https://doi.org/10.1007/s12282-020-01120-0.

    Article  PubMed  Google Scholar 

  34. Galimberti V, Cole BF, Viale G, et al. Axillary dissection versus no axillary dissection in patients with breast cancer and sentinel-node micrometastases (IBCSG 23-01): 10-year follow-up of a randomised, controlled phase 3 trial. Lancet Oncol. 2018;19(10):1385–93. https://doi.org/10.1016/s1470-2045(18)30380-2.

    Article  PubMed  Google Scholar 

  35. Giuliano AE, Ballman KV, McCall L, et al. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: the ACOSOG Z0011 (Alliance) Randomized Clinical Trial. Jama. 2017;318(10):918–26. https://doi.org/10.1001/jama.2017.11470.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Martelli G, Miceli R, Daidone MG, et al. Axillary dissection versus no axillary dissection in elderly patients with breast cancer and no palpable axillary nodes: results after 15 years of follow-up. Ann Surg Oncol. 2011;18(1):125–33. https://doi.org/10.1245/s10434-010-1217-7.

    Article  PubMed  Google Scholar 

  37. Isik A, Soran A, Grasi A, Barry N, Sezgin E. Lymphedema after sentinel lymph node biopsy: who is at risk? Lymphat Res Biol. 2022;20(2):160–3. https://doi.org/10.1089/lrb.2020.0093.

    Article  CAS  PubMed  Google Scholar 

  38. Salinas-Huertas S, Luzardo-González A, Vázquez-Gallego S, et al. Risk factors for lymphedema after breast surgery: a prospective cohort study in the era of sentinel lymph node biopsy. Breast Disease. 2022;41(1):97–108.

    Article  CAS  PubMed  Google Scholar 

  39. Soran A, Menekse E, Girgis M, DeGore L, Johnson R. Breast cancer-related lymphedema after axillary lymph node dissection: does early postoperative prediction model work? Support Care Cancer. 2016;24(3):1413–9. https://doi.org/10.1007/s00520-015-2933-0.

    Article  PubMed  Google Scholar 

  40. Tinterri C, Gentile D, Gatzemeier W, et al. Preservation of axillary lymph nodes compared with complete dissection in T1-2 breast cancer patients presenting one or two metastatic sentinel lymph nodes: the SINODAR-ONE multicenter randomized clinical trial. Ann Surg Oncol. 2022;29(9):5732–44. https://doi.org/10.1245/s10434-022-11866-w.

    Article  PubMed  Google Scholar 

  41. de Boniface J, Frisell J, Andersson Y, et al. Survival and axillary recurrence following sentinel node-positive breast cancer without completion axillary lymph node dissection: the randomized controlled SENOMAC trial. BMC Cancer. 2017;17(1):379. https://doi.org/10.1186/s12885-017-3361-y.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Classe JM, Loaec C, Gimbergues P, et al. Sentinel lymph node biopsy without axillary lymphadenectomy after neoadjuvant chemotherapy is accurate and safe for selected patients: the GANEA 2 study. Breast Cancer Res Treat. 2019;173(2):343–52. https://doi.org/10.1007/s10549-018-5004-7.

    Article  PubMed  Google Scholar 

  43. Kuehn T, Bauerfeind I, Fehm T, et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol. 2013;14(7):609–18. https://doi.org/10.1016/s1470-2045(13)70166-9.

    Article  PubMed  Google Scholar 

  44. Boughey JC, Suman VJ, Mittendorf EA, et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial. Jama. 2013;310(14):1455–61. https://doi.org/10.1001/jama.2013.278932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boileau JF, Poirier B, Basik M, et al. Sentinel node biopsy after neoadjuvant chemotherapy in biopsy-proven node-positive breast cancer: the SN FNAC study. J Clin Oncol. 2015;33(3):258–64. https://doi.org/10.1200/jco.2014.55.7827.

    Article  PubMed  Google Scholar 

  46. Gentilini OD, Botteri E, Sangalli C, et al. Sentinel lymph node biopsy vs no axillary surgery in patients with small breast cancer and negative results on ultrasonography of axillary lymph nodes: the SOUND randomized clinical trial. JAMA Oncol. 2023;9(11):1557–64. https://doi.org/10.1001/jamaoncol.2023.3759.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Surgical Oncology Choosing Wisely® guideline. 2024. https://choosingwisely.org/. Accessed 1 Dec 2023

  48. Shao X, Sun B, Shen Y. Axillary reverse mapping (ARM): where to go. Breast Cancer. 2019;26(1):1–10. https://doi.org/10.1007/s12282-018-0886-0.

    Article  PubMed  Google Scholar 

  49. Gennaro M, Maccauro M, Mariani L, et al. Occurrence of breast-cancer-related lymphedema after reverse lymphatic mapping and selective axillary dissection versus standard surgical treatment of axilla: a two-arm randomized clinical trial. Cancer. 2022;128(24):4185–93. https://doi.org/10.1002/cncr.34498.

    Article  PubMed  Google Scholar 

  50. Tummel E, Ochoa D, Korourian S, et al. Does axillary reverse mapping prevent lymphedema after lymphadenectomy? Ann Surg. 2017;265(5):987–92. https://doi.org/10.1097/sla.0000000000001778.

    Article  PubMed  Google Scholar 

  51. Guo X, Jiao D, Zhu J, et al. The effectiveness of axillary reverse mapping in preventing breast cancer-related lymphedema: a meta-analysis based on randomized controlled trials. Gland Surg. 2021;10(4):1447–59. https://doi.org/10.21037/gs-21-186.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Abbaci M, Conversano A, De Leeuw F, Laplace-Builhé C, Mazouni C. Near-infrared fluorescence imaging for the prevention and management of breast cancer-related lymphedema: a systematic review. Eur J Surg Oncol. 2019;45(10):1778–86. https://doi.org/10.1016/j.ejso.2019.06.009.

    Article  PubMed  Google Scholar 

  53. Yuan Q, Wu G, Xiao SY, et al. Identification and preservation of arm lymphatic system in axillary dissection for breast cancer to reduce arm lymphedema events: a randomized clinical trial. Ann Surg Oncol. 2019;26(11):3446–54. https://doi.org/10.1245/s10434-019-07569-4.

    Article  PubMed  Google Scholar 

  54. Yuan QQ, Wu GS, Hou JX, Zheng LW, Liao YQ, He YK. Identification and preservation of arm lymphatics in axillary lymph node dissection to prevent arm lymphedema: a single center randomized controlled trial. Zhonghua Zhong Liu Za Zhi. 2022;44(5):430–5. https://doi.org/10.3760/cma.j.cn112152-20200902-00785.

    Article  CAS  PubMed  Google Scholar 

  55. Tasdoven I, Balbaloglu H, Erdemir RU, Bahadir B, Guldeniz KC. Triple mapping for axillary staging after neoadjuvant therapy: axillary reverse mapping with indocyanine green and dual agent sentinel lymph node biopsy. Medicine (Baltimore). 2022;101(52):e32545. https://doi.org/10.1097/md.0000000000032545.

    Article  CAS  PubMed  Google Scholar 

  56. Han C, Yang B, Zuo WS, Zheng G, Yang L, Zheng MZ. The feasibility and oncological safety of axillary reverse mapping in patients with breast cancer: a systematic review and meta-analysis of prospective studies. PLoS One. 2016;11(2):e0150285. https://doi.org/10.1371/journal.pone.0150285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumar P, Singh P, Veerwal H, Ravi B, Narayan ML. Utility of axillary reverse mapping (ARM) and incidence of metastasis in arm draining lymph nodes in patients with breast cancer. World J Nucl Med. 2022;21(1):28–33. https://doi.org/10.1055/s-0042-1744198.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Co M, Lam L, Suen D, Kwong A. Axillary reverse mapping in the prevention of lymphoedema: a systematic review and pooled analysis. Clin Breast Cancer. 2023;23(1):e14–9. https://doi.org/10.1016/j.clbc.2022.10.008.

    Article  PubMed  Google Scholar 

  59. Aldrich MB, Rasmussen JC, DeSnyder SM, et al. Prediction of breast cancer-related lymphedema by dermal backflow detected with near-infrared fluorescence lymphatic imaging. Breast Cancer Res Treat. 2022;195(1):33–41. https://doi.org/10.1007/s10549-022-06667-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mackie H, Suami H, Thompson BM, et al. Retrograde lymph flow in the lymphatic vessels in limb lymphedema. J Vasc Surg Venous Lymphat Disord. 2022;10(5):1101–6. https://doi.org/10.1016/j.jvsv.2022.04.017.

    Article  PubMed  Google Scholar 

  61. Mihara M, Hara H, Hayashi Y, et al. Pathological steps of cancer-related lymphedema: histological changes in the collecting lymphatic vessels after lymphadenectomy. PLoS One. 2012;7(7):e41126. https://doi.org/10.1371/journal.pone.0041126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boccardo F, Casabona F, De Cian F, et al. Lymphedema microsurgical preventive healing approach: a new technique for primary prevention of arm lymphedema after mastectomy. Ann Surg Oncol. 2009;16(3):703–8. https://doi.org/10.1245/s10434-008-0270-y.

    Article  PubMed  Google Scholar 

  63. Campisi C, Boccardo F. Microsurgical techniques for lymphedema treatment: derivative lymphatic-venous microsurgery. World J Surg. 2004;28(6):609–13. https://doi.org/10.1007/s00268-004-7252-4.

    Article  PubMed  Google Scholar 

  64. Coriddi M, Mehrara B, Skoracki R, Singhal D, Dayan JH. Immediate lymphatic reconstruction: technical points and literature review. Plast Reconstr Surg Glob Open. 2021;9(2):e3431. https://doi.org/10.1097/gox.0000000000003431.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ozmen T, Lazaro M, Zhou Y, Vinyard A, Avisar E. Evaluation of simplified lymphatic microsurgical preventing healing approach (S-LYMPHA) for the prevention of breast cancer-related clinical lymphedema after axillary lymph node dissection. Ann Surg. 2019;270(6):1156–60. https://doi.org/10.1097/sla.0000000000002827.

    Article  PubMed  Google Scholar 

  66. Kleinhans E, Baumeister RG, Hahn D, Siuda S, Büll U, Moser E. Evaluation of transport kinetics in lymphoscintigraphy: follow-up study in patients with transplanted lymphatic vessels. Eur J Nucl Med. 1985;10(7-8):349–52. https://doi.org/10.1007/bf00251310.

    Article  CAS  PubMed  Google Scholar 

  67. Cambria RA, Gloviczki P, Naessens JM, Wahner HW. Noninvasive evaluation of the lymphatic system with lymphoscintigraphy: a prospective, semiquantitative analysis in 386 extremities. J Vasc Surg. 1993;18(5):773–82. https://doi.org/10.1067/mva.1993.50510.

    Article  CAS  PubMed  Google Scholar 

  68. Kleinhans E, Baumeister RGH, Hahn D, Siuda S, Büll U, Moser E. Evaluation of transport kinetics in lymphoscintigraphy: follow-up study in patients with transplanted lymphatic vessels. Eur J Nucl Med. 1985;10(7):349–52. https://doi.org/10.1007/BF00251310.

    Article  CAS  PubMed  Google Scholar 

  69. Boccardo F, Casabona F, De Cian F, et al. Lymphatic microsurgical preventing healing approach (LYMPHA) for primary surgical prevention of breast cancer-related lymphedema: over 4 years follow-up. Microsurgery. 2014;34(6):421–4. https://doi.org/10.1002/micr.22254.

    Article  PubMed  Google Scholar 

  70. Weinstein B, Le NK, Robertson E, et al. Reverse lymphatic mapping and immediate microsurgical lymphatic reconstruction reduces early risk of breast cancer-related lymphedema. Plast Reconstr Surg. 2022;149(5):1061–9. https://doi.org/10.1097/prs.0000000000008986.

    Article  CAS  PubMed  Google Scholar 

  71. Boccardo FM, Casabona F, Friedman D, et al. Surgical prevention of arm lymphedema after breast cancer treatment. Ann Surg Oncol. 2011;18(9):2500–5. https://doi.org/10.1245/s10434-011-1624-4.

    Article  PubMed  Google Scholar 

  72. Coriddi M, Dayan J, Bloomfield E et al (2023) Efficacy of immediate lymphatic reconstruction to decrease incidence of breast cancer-related lymphedema: preliminary results of randomized controlled trial. Ann Surg 278(4):630–637. https://doi.org/10.1097/SLA.0000000000005952

  73. Levy AS, Murphy AI, Ishtihar S, et al. Lymphatic microsurgical preventive healing approach for the primary prevention of lymphedema: a 4-year follow-up. Plast Reconstr Surg. 2023;151(2):413–20. https://doi.org/10.1097/prs.0000000000009857.

    Article  CAS  PubMed  Google Scholar 

  74. Cakmakoglu C, Kwiecien GJ, Schwarz GS, Gastman B. Lymphaticovenous bypass for immediate lymphatic reconstruction in locoregional advanced melanoma patients. J Reconstr Microsurg. 2020;36(4):247–52. https://doi.org/10.1055/s-0039-3401829.

    Article  PubMed  Google Scholar 

  75. Ezawa M, Sasaki H, Yamada K, et al. Long term outcomes from lymphatic venous anastomosis after total hysterectomy to prevent postoperative lymphedema in lower limb. BMC Surg. 2019;19(1):177. https://doi.org/10.1186/s12893-019-0628-z.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Johnson AR, Asban A, Granoff MD, et al. Is immediate lymphatic reconstruction cost-effective? Ann Surg. 2021;274(6):e581–8. https://doi.org/10.1097/sla.0000000000003746.

    Article  PubMed  Google Scholar 

  77. Squitieri L, Rasmussen PW, Patel KM. An economic analysis of prophylactic lymphovenous anastomosis among breast cancer patients receiving mastectomy with axillary lymph node dissection. J Surg Oncol. 2020;121(8):1175–8. https://doi.org/10.1002/jso.25902.

    Article  PubMed  Google Scholar 

  78. International Society of Lymphology Executive Committee (2003) The diagnosis and treatment of peripheral lymphedema. Lymphology 36:84–91

  79. Schaverien MV, Coroneos CJ. Surgical treatment of lymphedema. Plast Reconstr Surg. 2019;144(3):738–58. https://doi.org/10.1097/prs.0000000000005993.

    Article  CAS  PubMed  Google Scholar 

  80. Karlsson T, Karlsson M, Ohlin K, Olsson G, Brorson H. Liposuction of breast cancer-related arm lymphedema reduces fat and muscle hypertrophy. Lymphat Res Biol. 2022;20(1):53–63. https://doi.org/10.1089/lrb.2020.0120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Granoff MD, Johnson AR, Shillue K, et al. A single institution multi-disciplinary approach to power-assisted liposuction for the management of lymphedema. Ann Surg. 2022;276(5):e613–21. https://doi.org/10.1097/sla.0000000000004588.

    Article  PubMed  Google Scholar 

  82. Hassan K, Chang DW. The Charles procedure as part of the modern armamentarium against lymphedema. Ann Plast Surg. 2020;85(6):e37–43. https://doi.org/10.1097/sap.0000000000002263.

    Article  CAS  PubMed  Google Scholar 

  83. Ciudad P, Escandón JM, Manrique OJ, Bustos VP. Lessons learnt from an 11-year experience with lymphatic surgery and a systematic review of reported complications: technical considerations to reduce morbidity. Arch Plast Surg. 2022;49(2):227–39. https://doi.org/10.1055/s-0042-1744412.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chang DW, Dayan J, Greene AK, et al. Surgical treatment of lymphedema: a systematic review and meta-analysis of controlled trials. Results of a Consensus Conference. Plast Reconstr Surg. 2021;147(4):975–93. https://doi.org/10.1097/prs.0000000000007783.

    Article  CAS  PubMed  Google Scholar 

  85. Forte AJ, Sisti A, Huayllani MT, et al. Lymphaticovenular anastomosis for breast cancer-related upper extremity lymphedema: a literature review. Gland Surg. 2020;9(2):539–44. https://doi.org/10.21037/gs.2020.03.41.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Forte AJ, Cinotto G, Boczar D, Huayllani MT, McLaughlin SA. Omental lymph node transfer for lymphedema patients: a systematic review. Cureus. 2019;11(11):e6227. https://doi.org/10.7759/cureus.6227.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Forte AJ, Cinotto G, Boczar D, et al. Lymph node transfer combined with deep inferior epigastric perforators and transverse rectus abdominis myocutaneous procedures: a systematic review. Gland Surg. 2020;9(2):521–7. https://doi.org/10.21037/gs.2020.02.11.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Qian Y, Yang K, Mu L. Research progress of vascularized lymph node transfer for extremity lymphedema. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018;32(8):979–83. https://doi.org/10.7507/1002-1892.201801069.

    Article  PubMed  Google Scholar 

  89. Ward J, King I, Monroy-Iglesias M, et al. A meta-analysis of the efficacy of vascularised lymph node transfer in reducing limb volume and cellulitis episodes in patients with cancer treatment-related lymphoedema. Eur J Cancer. 2021;151:233–44. https://doi.org/10.1016/j.ejca.2021.02.043.

    Article  PubMed  Google Scholar 

  90. Schaverien MV, Chang EI. Combined deep inferior epigastric artery perforator flap with vascularized groin lymph node transplant for treatment of breast cancer-related lymphedema. Gland Surg. 2021;10(1):460–8. https://doi.org/10.21037/gs.2020.02.14.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bolletta A, di Taranto G, Losco L, et al. Combined lymph node transfer and suction-assisted lipectomy in lymphedema treatment: a prospective study. Microsurgery. 2022;42(5):433–40. https://doi.org/10.1002/micr.30855.

    Article  PubMed  Google Scholar 

  92. Ciudad P, Manrique OJ, Adabi K, et al. Combined double vascularized lymph node transfers and modified radical reduction with preservation of perforators for advanced stages of lymphedema. J Surg Oncol. 2019;119(4):439–48. https://doi.org/10.1002/jso.25360.

    Article  PubMed  Google Scholar 

  93. Pereira N, Lee YH, Suh Y, et al. Cumulative experience in lymphovenous anastomosis for lymphedema treatment: the learning curve effect on the overall outcome. J Reconstr Microsurg. 2018;34(09):735–41. https://doi.org/10.1055/s-0038-1648220.

    Article  PubMed  Google Scholar 

  94. Mihara M, Hara H, Furniss D, et al. Lymphaticovenular anastomosis to prevent cellulitis associated with lymphoedema. Br J Surg. 2014;101(11):1391–6. https://doi.org/10.1002/bjs.9588.

    Article  CAS  PubMed  Google Scholar 

  95. Gupta N, Verhey EM, Torres-Guzman RA, et al. Outcomes of lymphovenous anastomosis for upper extremity lymphedema: a systematic review. Plast Reconstr Surg Glob Open. 2021;9(8):e3770. https://doi.org/10.1097/gox.0000000000003770.

    Article  PubMed  PubMed Central  Google Scholar 

  96. • Chang DW, Dayan J, Greene AK, et al. Surgical treatment of lymphedema: a systematic review and meta-analysis of controlled trials. Results of a consensus conference. Plast Reconstr Surg. 2021;147(4):975–93. https://doi.org/10.1097/prs.0000000000007783The conference found that lymphovenous anastomosis and lymph node transplants effectively reduce lymphedema severity. It also highlighted liposuction and debulking as beneficial, stressing the need for more research to improve these techniques.

  97. Canales-Lachén E, Asunsolo Á, Manrique OJ, Blázquez J, Holguín P, Maldonado AA. The use of ultrasound imaging for upper extremity lymphedema after breast cancer: a systematic review. J Reconstr Microsurg. 2023;39(2):102–10. https://doi.org/10.1055/s-0042-1750824.

    Article  PubMed  Google Scholar 

  98. Forte AJ, Boczar D, Huayllani MT, et al. Use of magnetic resonance imaging lymphangiography for preoperative planning in lymphedema surgery: a systematic review. Microsurgery. 2021;41(4):384–90. https://doi.org/10.1002/micr.30731.

    Article  PubMed  Google Scholar 

  99. Visconti G, Hayashi A, Bianchi A, Tartaglione G, Bartoletti R, Salgarello M. Lymphaticovenular anastomosis for advanced-stage peripheral lymphedema: expanding indication and introducing the hand/foot sign. J Plast Reconstr Aesthet Surg. 2022;75(7):2153–63. https://doi.org/10.1016/j.bjps.2022.02.012.

    Article  PubMed  Google Scholar 

  100. Winters H, Tielemans HJP, Hameeteman M, et al. The efficacy of lymphaticovenular anastomosis in breast cancer-related lymphedema. Breast Cancer Res Treat. 2017;165(2):321–7. https://doi.org/10.1007/s10549-017-4335-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. • Wolfs J, de Joode L, van der Hulst R, Qiu SS. Correlation between patency and clinical improvement after lymphaticovenous anastomosis (LVA) in breast cancer-related lymphedema: 12-month follow-up. Breast Cancer Res Treat. 2020;179(1):131–8. https://doi.org/10.1007/s10549-019-05450-2This study on Breast Cancer-Related Lymphedema shows Lymphaticovenous anastomosis (LVA) improves quality of life in 76% of patients, though arm size changes minimally. More research is needed to fully understand LVA's benefits.

  102. Engel H, Lin CY, Huang JJ, Cheng MH. Outcomes of lymphedema microsurgery for breast cancer-related lymphedema with or without microvascular breast reconstruction. Ann Surg. 2018;268(6):1076–83. https://doi.org/10.1097/sla.0000000000002322.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the Mayo Clinic Clinical Research Operations Group and Mayo Clinic Center for Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed significantly to the development and completion of this review. KCM and AJF were responsible for the conception and design of the study, including the identification of relevant literature, formulation of the research question, and overall structure of the manuscript. KCM, FRA and RAT, conducted an extensive literature search, critically analyzed the selected articles, and synthesized the information to support the main arguments and themes of the review. JPG and SB assisted in data extraction and analysis, contributing to the synthesis of the narrative review. OAH and AJF provided valuable input in the interpretation of findings, ensuring the accuracy and relevance of the content presented. SAB played a pivotal role in the revision process, ensuring clarity, coherence, and consistency in the manuscript. All authors contributed to the final draft, offering intellectual input and critical feedback, and approved the submission of this work for publication.

Corresponding author

Correspondence to Antonio J. Forte.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies of human or animal subjects performed by authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maita, K.C., Avila, F.R., Torres-Guzman, R.A. et al. Surgery for Lymphedema Prevention and Treatment. Curr Breast Cancer Rep (2024). https://doi.org/10.1007/s12609-024-00540-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12609-024-00540-7

Keywords

Navigation