Skip to main content
Log in

The Association between Dietary Protein Diversity and Protein Patterns with Frailty in Older Chinese Adults: A Population-Based Cohort Study

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

Frailty is a pervasive condition among older people worldwide. Despite the association between higher protein intake and lower frailty risk has been well documented, older individuals encounter barriers to enhancing their protein consumption due to reduced appetite and impaired digestive capacity. This study aims to delve into the potential correlation between dietary protein diversity, protein patterns, and the risk of frailty among older Chinese individuals.

Design

Prospective cohort study.

Setting

Community-based.

Participants

2,216 participants aged 65 and above and not frail at the baseline were recruited from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) dataset spanning from 2014 to 2018.

Measurements

Dietary protein diversity was evaluated utilizing a protein diversity score (PDS), calculated based on the results of a food frequency questionnaire. Dietary protein patterns were identified by employing principal component analysis (PCA). Frailty was ascertained using a 40-item frailty index (FI) where FI > 0.21 indicated frailty. Logistic analysis was employed to investigate the association between dietary variables and frailty.

Results

541 participants were identified as frail after a 4-year follow-up. After adjusting for confounders, each 1-unit increase in PDS was linked to a 10% decrease in frailty risk. Compared to individuals with PDS ≤ 1, those with PDS scores of 2–3, 4–5, and 6 had lower risks of frailty, with OR (95% CI) of 0.78 (0.58–1.06), 0.58 (0.38–0.87), 0.42 (0.20–0.81), respectively (P trend = 0.038). Individuals who consistently maintained high PDS demonstrated a lower frailty risk in contrast to those who maintained low PDS (OR = 0.60, 95% CI, 0.41–0.87). Additionally, the “meat-fish” pattern exhibited a protective association with frailty, with OR Q4 versus Q1 (95% CI) of 0.54 (0.40–0.74), P trend < 0.001.

Conclusion

Maintaining a variety of dietary protein sources and following a “meat-fish” protein pattern might decrease the likelihood of frailty among the older Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–M156. doi:https://doi.org/10.1093/gerona/56.3.m146.

    Article  CAS  PubMed  Google Scholar 

  2. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013; 381: 752–62.

    Article  PubMed  Google Scholar 

  3. Middleton R, Poveda JL, Orfila Pernas F, et al. Mortality, Falls, and Fracture Risk Are Positively Associated With Frailty: A SIDIAP Cohort Study of 890,000 Patients. J Gerontol A Biol Sci Med Sci. 2022;77(1):148–154. doi:https://doi.org/10.1093/gerona/glab102.

    Article  PubMed  Google Scholar 

  4. Kojima G, Iliffe S, Jivraj S, Walters K. Association between frailty and quality of life among community-dwelling older people: a systematic review and meta-analysis. J Epidemiol Community Health. 2016;70(7):716–721. doi:https://doi.org/10.1136/jech-2015-206717.

    Article  PubMed  Google Scholar 

  5. Liu M, Hou T, Nkimbeng M, et al. Associations between symptoms of pain, insomnia and depression, and frailty in older adults: A cross-sectional analysis of a cohort study. Int J Nurs Stud. 2021;117:103873. doi:https://doi.org/10.1016/j.ijnuretu.2021.103873.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rockwood K, Mitnitski A. Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci. 2007;62(7):722–727. doi:https://doi.org/10.1093/gerona/62.7.722.

    Article  PubMed  Google Scholar 

  7. Yannakoulia M, Ntanasi E, Anastasiou CA, Scarmeas N. Frailty and nutrition: From epidemiological and clinical evidence to potential mechanisms. Metabolism. 2017;68:64–76. doi:https://doi.org/10.1016/j.metabol.2016.12.005.

    Article  CAS  PubMed  Google Scholar 

  8. Konglevoll DM, Hjartåker A, Hopstock LA, et al. Protein Intake and the Risk of Pre-Frailty and Frailty in Norwegian Older Adults. The Tromsø Study 1994–2016. J Frailty Aging. 2022;11(3):256–266. doi:https://doi.org/10.14283/jfa.2022.16.

    CAS  PubMed  Google Scholar 

  9. Mendonça N, Kingston A, Granic A, Jagger C. Protein intake and transitions between frailty states and to death in very old adults: the Newcastle 85+ study. Age Ageing. 2019;49(1):32–38. doi:https://doi.org/10.1093/ageing/afz142.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Coelho-Junior HJ, Calvani R, Picca A, Tosato M, Landi F, Marzetti E. Protein Intake and Frailty in Older Adults: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients. 2022;14(13):2767. doi:https://doi.org/10.3390/nu14132767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coelho-Junior HJ, Marzetti E, Picca A, Cesari M, Uchida MC, Calvani R. Protein Intake and Frailty: A Matter of Quantity, Quality, and Timing. Nutrients. 2020;12(10):2915. doi:https://doi.org/10.3390/nu12102915.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD. Management of frailty: opportunities, challenges, and future directions. Lancet. 2019;394(10206):1376–1386. doi:https://doi.org/10.1016/S0140-6736(19)31785-4.

    Article  PubMed  Google Scholar 

  13. Landi F, Calvani R, Tosato M, et al. Protein Intake and Muscle Health in Old Age: From Biological Plausibility to Clinical Evidence. Nutrients. 2016;8(5):295. doi:https://doi.org/10.3390/nu8050295.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Keller HH. Promoting food intake in older adults living in the community: a review. Appl Physiol Nutr Metab. 2007;32(6):991–1000. doi:https://doi.org/10.1139/H07-067.

    Article  MathSciNet  PubMed  Google Scholar 

  15. Zhou C, Wu Q, Ye Z, et al. Inverse Association Between Variety of Proteins With Appropriate Quantity From Different Food Sources and New-Onset Hypertension. Hypertension. 2022;79(5):1017–1027. doi:https://doi.org/10.1161/HYPERTENSIONAHA.121.18222.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou C, Liu C, Zhang Z, et al. Variety and quantity of dietary protein intake from different sources and risk of new-onset diabetes: a Nationwide Cohort Study in China. BMC Med. 2022;20(1):6. doi:https://doi.org/10.1186/s12916-021-02199-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Isanejad M, Sirola J, Rikkonen T, et al. Higher protein intake is associated with a lower likelihood of frailty among older women, Kuopio OSTPRE-Fracture Prevention Study. Eur J Nutr. 2020;59(3):1181–1189. doi:https://doi.org/10.1007/s00394-019-01978-7.

    Article  CAS  PubMed  Google Scholar 

  18. Struijk EA, Fung TT, Rodríguez-Artalejo F, et al. Protein intake and risk of frailty among older women in the Nurses’ Health Study. J Cachexia Sarcopenia Muscle. 2022;13(3):1752–1761. doi:https://doi.org/10.1002/jcsm.12972

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zeng Y, Feng Q, Gu D, Vaupel JW. Demographics, phenotypic health characteristics and genetic analysis of centenarians in China. Mech Ageing Dev. 2017;165(Pt B):86–97. doi:https://doi.org/10.1016/j.mad.2016.12.010

    Article  PubMed  Google Scholar 

  20. Yi Z. Introduction to the Chinese Longitudinal Healthy Longevity Survey (CLHLS). In: Yi Z, Poston DL, Vlosky DA, Gu D, editors. Healthy Longevity in China: Demographic, Socioeconomic, and Psychological Dimensions. Dordrecht: Springer Netherlands; 2008. pp. 23–38.

    Chapter  Google Scholar 

  21. Lv X, Sun S, Wang J, et al. Anti-Inflammatory Dietary Diversity and Depressive Symptoms among Older Adults: A Nationwide Cross-Sectional Analysis. Nutrients. 2022;14(23):5062. doi:https://doi.org/10.3390/nu14235062

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yin Z, Fei Z, Qiu C, et al. Dietary Diversity and Cognitive Function among Elderly People: A Population-Based Study. J Nutr Health Aging. 2017;21(10):1089–1094. doi:https://doi.org/10.1007/s12603-017-0912-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang XM, Zhong WF, Li ZH, et al. Dietary diversity and frailty among older Chinese people: evidence from the Chinese Longitudinal Healthy Longevity Study. Am J Clin Nutr. 2023;117(2):383–391. doi:https://doi.org/10.1016/j.ajcnut.2022.11.017.

    Article  PubMed  Google Scholar 

  24. Kennedy G, Ballard T, Dop MC. Guidelines for measuring household and individual dietary diversity. Food and Agriculture Organization of the United Nations; 2011. p26.

  25. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty index. BMC Geriatr. 2008;8:24. doi:https://doi.org/10.1186/1471-2318-8-24.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen CL, Cai AP, Nie ZQ, Huang YQ, Feng YQ. Systolic Blood Pressure and Mortality in Community-Dwelling Older Adults: The Role of Frailty. J Nutr Health Aging. 2022;26(10):962–970. doi:https://doi.org/10.1007/s12603-022-1850-4

    Article  CAS  PubMed  Google Scholar 

  27. Liu ZY, Wei YZ, Wei LQ, et al. Frailty transitions and types of death in Chinese older adults: a population-based cohort study. Clin Interv Aging. 2018;13:947–956. doi:https://doi.org/10.2147/CIA.S157089

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hoover M, Rotermann M, Sanmartin C, Bernier J. Validation of an index to estimate the prevalence of frailty among community-dwelling seniors. Health Rep. 2013;24(9):10–17.

    PubMed  Google Scholar 

  29. Zheng J, Zhou R, Li F, et al. Association between dietary diversity and cognitive impairment among the oldest-old: Findings from a nationwide cohort study. Clin Nutr. 2021;40(4):1452–1462. doi:https://doi.org/10.1016/j.clnu.2021.02.041

    Article  PubMed  Google Scholar 

  30. Gao J, Wang Y, Xu J, Jiang J, Yang S, Xiao Q. Life expectancy among older adults with or without frailty in China: multistate modelling of a national longitudinal cohort study. BMC Med. 2023;21(1):101. doi:https://doi.org/10.1186/s12916-023-02825-7

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nanri H, Yamada Y, Yoshida T, et al. Sex Difference in the Association Between Protein Intake and Frailty: Assessed Using the Kihon Checklist Indexes Among Older Adults. J Am Med Dir Assoc. 2018;19(9):801–805. doi:https://doi.org/10.1016/j.jamda.2018.04.005.

    Article  PubMed  Google Scholar 

  32. Sandoval-Insausti H, Pérez-Tasigchana RF, López-García E, García-Esquinas E, Rodríguez-Artalejo F, Guallar-Castillón P. Macronutrients Intake and Incident Frailty in Older Adults: A Prospective Cohort Study. J Gerontol A Biol Sci Med Sci. 2016;71(10):1329–1334. doi:https://doi.org/10.1093/gerona/glw033.

    Article  CAS  PubMed  Google Scholar 

  33. Wu SY, Yeh NH, Chang HY, et al. Adequate protein intake in older adults in the context of frailty: cross-sectional results of the Nutrition and Health Survey in Taiwan 2014–2017. Am J Clin Nutr. 2021;114(2):649–660. doi:https://doi.org/10.1093/ajcn/nqab070.

    Article  PubMed  Google Scholar 

  34. Beasley JM, LaCroix AZ, Neuhouser ML, et al. Protein intake and incident frailty in the Women’s Health Initiative observational study. J Am Geriatr Soc. 2010;58(6):1063–1071. doi:https://doi.org/10.1111/j.1532-5415.2010.02866.x.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rahi B, Colombet Z, Gonzalez-Colaço Harmand M, et al. Higher Protein but Not Energy Intake Is Associated With a Lower Prevalence of Frailty Among Community-Dwelling Older Adults in the French Three-City Cohort. J Am Med Dir Assoc. 2016;17(7):672.e7–672.e11. doi:https://doi.org/10.1016/j.jamda.2016.05.005.

    Article  PubMed  Google Scholar 

  36. Cruz-Jentoft AJ, Michel JP. Sarcopenia: A useful paradigm for physical frailty. European Geriatric Medicine, 2013, 4(2):102–105. doi:https://doi.org/10.1016/j.eurger.2013.02.009.

    Article  Google Scholar 

  37. Houston DK, Nicklas BJ, Ding J, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr. 2008;87(1):150–155.

    Article  CAS  PubMed  Google Scholar 

  38. Bollwein J, Diekmann R, Kaiser MJ, et al. Distribution but not amount of protein intake is associated with frailty: a cross-sectional investigation in the region of Nürnberg. Nutr J. 2013;12:109. doi:https://doi.org/10.1186/1475-2891-12-109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang WC, Huang YC, Lee MS, Doong JY, Pan WH, Chang HY. The Combined Effects of Dietary Diversity and Frailty on Mortality in Older Taiwanese People. Nutrients. 2022;14(18):3825. doi:https://doi.org/10.3390/nu14183825.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Duan Y, Qi Q, Cui Y, Yang L, Zhang M, Liu H. Effects of dietary diversity on frailty in Chinese older adults: a 3-year cohort study. BMC Geriatr. 2023;23(1):141. doi:https://doi.org/10.1186/s12877-023-03875-5

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yokoro M, Otaki N, Yano M, et al. Low Dietary Variety Is Associated with Incident Frailty in Older Adults during the Coronavirus Disease 2019 Pandemic: A Prospective Cohort Study in Japan. Nutrients. 2023;15(5):1145. doi:https://doi.org/10.3390/nu15051145.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Motokawa K, Watanabe Y, Edahiro A, et al. Frailty Severity and Dietary Variety in Japanese Older Persons: A Cross-Sectional Study. J Nutr Health Aging. 2018;22(3):451–456. doi:https://doi.org/10.1007/s12603-018-1000-1.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Wang Q, Hao W, Zhu D. Long-Term Food Variety and Dietary Patterns Are Associated with Frailty among Chinese Older Adults: A Cohort Study Based on CLHLS from 2014 to 2018. Nutrients. 2022;14(20):4279. doi:https://doi.org/10.3390/nu14204279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gorissen SHM, Crombag JJR, Senden JMG, et al. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids. 2018;50(12):1685–1695. doi:https://doi.org/10.1007/s00726-018-2640-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dimina L, Rémond D, Huneau JF, Mariotti F. Combining Plant Proteins to Achieve Amino Acid Profiles Adapted to Various Nutritional Objectives-An Exploratory Analysis Using Linear Programming. Front Nutr. 2022;8:809685. doi:https://doi.org/10.3389/fnut.2021.809685.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhou C, Yang S, Zhang Y, et al. Relations of Variety and Quantity of Dietary Proteins Intake from Different Sources with Mortality Risk: A Nationwide Population-Based Cohort. J Nutr Health Aging. 2022;26(12):1078–1086. doi:https://doi.org/10.1007/s12603-022-1870-0.

    Article  CAS  PubMed  Google Scholar 

  47. Konglevoll DM, Andersen LF, Hopstock LA, et al. Fish intake and pre-frailty in Norwegian older adults - a prospective cohort study: the Tromsø Study 1994–2016. BMC Geriatr. 2023;23(1):411. Published 2023 Jul 5. doi:https://doi.org/10.1186/s12877-023-04081-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lord C, Chaput JP, Aubertin-Leheudre M, et al. Dietary animal protein intake: association with muscle mass index in older women. J Nutr Health Aging. 2007;11:383–387.

    CAS  PubMed  Google Scholar 

  49. Gorissen SHM, Witard OC. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc Nutr Soc. 2018;77(1):20–31. doi:https://doi.org/10.1017/S002966511700194X.

    Article  CAS  PubMed  Google Scholar 

  50. Moughan PJ, Wolfe RR. Determination of Dietary Amino Acid Digestibility in Humans. J Nutr. 2019;149(12):2101–2109. doi:https://doi.org/10.1093/jn/nxz211.

    Article  PubMed  Google Scholar 

  51. Lee S, Choi YS, Jo K, Yong HI, Jeong HG, Jung S. Improvement of meat protein digestibility in infants and the elderly. Food Chem. 2021;356:129707. doi:https://doi.org/10.1016/j.foodchem.2021.129707

    Article  CAS  PubMed  Google Scholar 

  52. Gupta YP. Anti-nutritional and toxic factors in food legumes: a review. Plant Foods Hum Nutr. 1987;37(3):201–228. doi:https://doi.org/10.1007/BF01091786.

    Article  CAS  PubMed  Google Scholar 

  53. Verlaan S, Aspray TJ, Bauer JM, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: A case-control study. Clin Nutr. 2017;36(1):267–274. doi:https://doi.org/10.1016/j.clnu.2015.11.013.

    Article  PubMed  Google Scholar 

  54. Ates Bulut E, Soysal P, Aydin AE, Dokuzlar O, Kocyigit SE, Isik AT. Vitamin B12 deficiency might be related to sarcopenia in older adults. Exp Gerontol. 2017;95:136–140. doi:https://doi.org/10.1016/j.exger.2017.05.017.

    Article  PubMed  Google Scholar 

  55. Higashida K, Inoue S, Nakai N. Iron deficiency attenuates protein synthesis stimulated by branched-chain amino acids and insulin in myotubes. Biochem Biophys Res Commun. 531(2):112–117. doi: https://doi.org/10.1016/j.bbrc.2020.07.041.

  56. Soto ME, Pérez-Torres I, Rubio-Ruiz ME, Cano-Martínez A, Manzano-Pech L, Guarner-Lans V. Frailty and the Interactions between Skeletal Muscle, Bone, and Adipose Tissue-Impact on Cardiovascular Disease and Possible Therapeutic Measures. Int J Mol Sci. 2023;24(5):4534. doi:https://doi.org/10.3390/ijms24054534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vega-Cabello V, Caballero FF, Lana A, et al. Association of Zinc Intake With Risk of Impaired Physical Function and Frailty Among Older Adults. J Gerontol A Biol Sci Med Sci. 2022;77(10):2015–2022. doi:https://doi.org/10.1093/gerona/glac014.

    Article  CAS  PubMed  Google Scholar 

  58. Kim D, Won CW, Park Y. Association Between Erythrocyte Levels of n-3 Polyunsaturated Fatty Acids and Risk of Frailty in Community-Dwelling Older Adults: The Korean Frailty and Aging Cohort Study. J Gerontol A Biol Sci Med Sci. 2021;76(3):499–504. doi:https://doi.org/10.1093/gerona/glaa042

    Article  CAS  PubMed  Google Scholar 

  59. Siefkas AC, Millar CL, Dufour AB, Kiel DP, Jacques PF, Hannan MT, Sahni S. Dairy Food Intake Is Not Associated With Frailty in Adults From the Framingham Heart Study. J Acad Nutr Diet. 123(5):729–739.e1. doi: https://doi.org/10.1016/j.jand.2022.09.012.

  60. Rahi B, Pellay H, Chuy V, Helmer C, Samieri C, Féart C. Dairy Product Intake and Long-Term Risk for Frailty among French Elderly Community Dwellers. Nutrients. 13(7):2151. doi: https://doi.org/10.3390/nu13072151.

  61. Lana A, Rodriguez-Artalejo F, Lopez-Garcia E. Dairy Consumption and Risk of Frailty in Older Adults: A Prospective Cohort Study. J Am Geriatr Soc. 2015;63(9):1852–1860. doi:https://doi.org/10.1111/jgs.13626.

    Article  PubMed  Google Scholar 

  62. Laclaustra M, Rodriguez-Artalejo F, Guallar-Castillon P, Banegas JR, Graciani A, Garcia-Esquinas E, Ordovas J, Lopez-Garcia E. Prospective association between added sugars and frailty in older adults. Am J Clin Nutr. 107(5):772–779. doi: https://doi.org/10.1093/ajcn/nqy028.

  63. Yang Y, Zhang D, Yuan G, Wu Y, Huang X. Association between nut consumption and frailty in the elderly: a large sample cross-sectional study. J Hum Nutr Diet. doi: https://doi.org/10.1111/jhn.13208.

  64. Wang R, Hannan MT, Wang M, Schwartz AW, Lopez-Garcia E, Grodstein F. Long-Term Consumption of Nuts (Including Peanuts, Peanut Butter, Walnuts, and Other Nuts) in Relation to Risk of Frailty in Older Women: Evidence from a Cohort Study. J Nutr. 153(3):820–827. doi: https://doi.org/10.1016/j.tjnut.2023.01.003.

  65. Ouyang Y, Wang H, Wang Z, Su C, Zhang J, Du W, Jiang H, Huang F, Jia X, Wang Y, Li L, Zhang B. [Intake of nuts among Chinese elderly residents in 15 provinces, 2015]. Wei Sheng Yan Jiu. 48(4):526–530. Chinese.

  66. Johnson KO, Shannon OM, Matu J, Holliday A, Ispoglou T, Deighton K. Differences in circulating appetite-related hormone concentrations between younger and older adults: a systematic review and meta-analysis. Aging Clin Exp Res. 2020;32(7):1233–1244. doi:https://doi.org/10.1007/s40520-019-01292-6.

    Article  PubMed  Google Scholar 

  67. Ispoglou T, Witard OC, Duckworth LC, Lees MJ. The efficacy of essential amino acid supplementation for augmenting dietary protein intake in older adults: implications for skeletal muscle mass, strength and function. Proc Nutr Soc. 2021;80(2):230–242. doi:https://doi.org/10.1017/S0029665120008010.

    Article  CAS  PubMed  Google Scholar 

  68. Zhao W, Hasegawa K, Chen J. The use of food-frequency questionnaires for various purposes in China. Public Health Nutr. 2002;5(6A):829–833. doi:https://doi.org/10.1079/phn2002374.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Hao Lei for providing valuable suggestions on statistical analysis for this paper.

Funding

Funding Statement: This research was funded by the Key Research and Development Program of Zhejiang Province (grant number 2020C03002), Healthy Zhejiang One Million Cohort (grant number K20230085), and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (grant number 2019R01007).

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: Min Yang and Qiyun Xue contributed to the conception and design of the study. Qiyun Xue and Qiqi Lin contributed to the acquisition of data and data analysis. Qiyun Xue and Menglian Shen wrote the original draft. Xifeng Wu and Min Yang contributed to revising the manuscript. All authors reviewed and edited the draft, and approved the final manuscript.

Corresponding author

Correspondence to Min Yang.

Ethics declarations

Ethical standards: The study was approved by the Research Ethics Committee of Peking University (IRB00001052-13074). All participants provided informed consent prior to their participation in the study.

Conflicts of Interest: The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Q., Shen, M., Lin, Q. et al. The Association between Dietary Protein Diversity and Protein Patterns with Frailty in Older Chinese Adults: A Population-Based Cohort Study. J Nutr Health Aging 27, 1219–1227 (2023). https://doi.org/10.1007/s12603-023-2043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-023-2043-5

Key words

Navigation