Skip to main content
Log in

The Relationship between Dietary Copper intake and Telomere Length in Hypertension

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Background

More indications proved that diet might be involved in the telomere length, a marker of biological aging and chronic diseases. Copper is widely viewed as one of the essential elements in the diet. Therefore, this study aimed to evaluate the relationship between telomere length and dietary copper intake in hypertension and provide a basis for guiding dietary copper intake in patients with hypertension.

Methods

The data was collected from the National Health and Nutrition Examination Survey (NHANES) in 1999–2000 and 2001–2002. The relevance between telomere length and dietary copper intake in hypertension is assessed using a multivariable linear regression model.

Results

We gathered 1,867 participants with hypertension with assessed telomere length and dietary copper intake. We found that one unit increasing log-transformed dietary copper intake in hypertension was significantly associated with longer telomere length base pair (bp) (β = 112.20, 95% confidence interval [CI]: 5.48, 218.92), after controlling for covariates, including age, sex, ethnicity, body mass index (BMI), physical activity, and taking medication for hypertension. For the age group, we found that one unit increasing log-transformed dietary copper in hypertension was associated with longer telomere length (β = 237.95, 95% CI: 114.39, 361.51) in the age group >45 years. The grouping was based on whether the participants take medication for hypertension. We found that one unit increasing log-transformed dietary copper in hypertension was associated with longer telomere length (β = 116.47, 95% CI: 0.72, 232.21) in the group that takes medication for hypertension.

Conclusions

This study demonstrates that dietary copper intake was associated with longer telomere length in patients with hypertension, which provides evidence for guiding dietary copper intake in patients with hypertension. However, further studies are needed to evaluate the effect of copper supplementation on telomere length in patients with hypertension in well-designed random control studies and prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Bonham M, O’Connor JM, Hannigan BM, Strain JJ. The immune system as a physiological indicator of marginal copper status?. Br J Nutr. 2002;87(5):393–403. doi:https://doi.org/10.1079/BJNBJN2002558

    Article  CAS  Google Scholar 

  2. Uriu-Adams JY, Keen CL. Copper, oxidative stress, and human health. Mol Aspects Med. 2005;26(4–5):268–298. doi:https://doi.org/10.1016/j.mam.2005.07.015

    Article  CAS  Google Scholar 

  3. Opazo CM, Greenough MA, Bush AI. Copper: from neurotransmission to neuroproteostasis. Front Aging Neurosci. 2014;6:143. Published 2014 Jul 3. doi:https://doi.org/10.3389/fnagi.2014.00143

    Article  Google Scholar 

  4. Huff JD, Keung YK, Thakuri M, et al. Copper deficiency causes reversible myelodysplasia. Am J Hematol. 2007;82(7):625–630. doi:https://doi.org/10.1002/ajh.20864

    Article  CAS  Google Scholar 

  5. Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I. Dietary copper and human health: Current evidence and unresolved issues. J Trace Elem Med Biol. 2016;35:107–115. doi:https://doi.org/10.1016/j.jtemb.2016.02.006

    Article  CAS  Google Scholar 

  6. Zatta P, Frank A. Copper deficiency and neurological disorders in man and animals. Brain Res Rev. 2007;54(1):19–33. doi:https://doi.org/10.1016/j.brainresrev.2006.10.001

    Article  CAS  Google Scholar 

  7. Tosco A, Fontanella B, Danise R, et al. Molecular bases of copper and iron deficiency-associated dyslipidemia: a microarray analysis of the rat intestinal transcriptome. Genes Nutr. 2010;5(1):1–8. doi:https://doi.org/10.1007/s12263-009-0153-2

    Article  CAS  Google Scholar 

  8. Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–1198. doi:https://doi.org/10.1126/science.aab3389

    Article  CAS  Google Scholar 

  9. Zhan Y, Karlsson IK, Karlsson R, et al. Exploring the Causal Pathway From Telomere Length to Coronary Heart Disease: A Network Mendelian Randomization Study. Circ Res. 2017;121(3):214–219. doi:https://doi.org/10.1161/CIRCRESAHA.116.310517

    Article  CAS  Google Scholar 

  10. Zhan Y, Clements MS, Roberts RO, et al. Association of telomere length with general cognitive trajectories: a meta-analysis of four prospective cohort studies. Neurobiol Aging. 2018;69:111–116. doi:https://doi.org/10.1016/j.neurobiolaging.2018.05.004

    Article  Google Scholar 

  11. Gilfillan C, Naidu P, Gunawan F, Hassan F, Tian P, Elwood N. Leukocyte Telomere Length in the Neonatal Offspring of Mothers with Gestational and Pre-Gestational Diabetes. PLoS One. 2016;11(10):e0163824. Published 2016 Oct 13. doi:https://doi.org/10.1371/journal.pone.0163824

    Article  Google Scholar 

  12. Telomeres Mendelian Randomization Collaboration, Haycock PC, Burgess S, et al. Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study. JAMA Oncol. 2017;3(5):636–651. doi:https://doi.org/10.1001/jamaoncol.2016.5945

    Article  Google Scholar 

  13. Bekaert S, De Meyer T, Rietzschel ER, et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell. 2007;6(5):639–647. doi:https://doi.org/10.1111/j.1474-9726.2007.00321.x

    Article  CAS  Google Scholar 

  14. Testa R, Olivieri F, Sirolla C, et al. Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet Med. 2011;28(11):1388–1394. doi:https://doi.org/10.1111/j.1464-5491.2011.03370.x

    Article  CAS  Google Scholar 

  15. Zhao J, Zhu Y, Lin J, et al. Short leukocyte telomere length predicts risk of diabetes in american indians: the strong heart family study. Diabetes. 2014;63(1):354–362. doi:https://doi.org/10.2337/db13-0744

    Article  CAS  Google Scholar 

  16. Serra V, von Zglinicki T, Lorenz M, Saretzki G. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem. 2003;278(9):6824–6830. doi:https://doi.org/10.1074/jbc.M207939200

    Article  CAS  Google Scholar 

  17. Mirabello L, Huang WY, Wong JY, et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009;8(4):405–413. doi:https://doi.org/10.1111/j.1474-9726.2009.0048-5.x

    Article  CAS  Google Scholar 

  18. Tucker LA. Physical activity and telomere length in U.S. men and women: An NHANES investigation. Prev Med. 2017;100:145–151. doi:https://doi.org/10.1016/j.ypmed.2017.0-4.027

    Article  Google Scholar 

  19. Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR Jr. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–1412. doi:https://doi.org/10.3945/ajcn.2-008.26429

    CAS  PubMed  Google Scholar 

  20. Needham BL, Rehkopf D, Adler N, et al. Leukocyte telomere length and mortality in the National Health and Nutrition Examination Survey, 1999–2002. Epidemiology. 2015;26(4):528–535. doi:https://doi.org/10.1097/EDE.0000000000000299

    Article  Google Scholar 

  21. Ko E, Seo HW, Jung G. Telomere length and reactive oxygen species levels are positively associated with a high risk of mortality and recurrence in hepatocellular carcinoma. Hepatology. 2018;67(4):1378–1391. doi:https://doi.org/10.1002/hep.29604

    Article  CAS  Google Scholar 

  22. Das A, Sudhahar V, Chen GF, et al. Endothelial Antioxidant-1: a Key Mediator of Copper-dependent Wound Healing in vivo. Sci Rep. 2016;6:33783. Published 2016 Sep 26. doi:https://doi.org/10.1038/srep33783

    Article  CAS  Google Scholar 

  23. Morrell A, Tallino S, Yu L, Burkhead JL. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life. 2017;69(4):263–270. doi:https://doi.org/10.1002/iub.1613

    Article  CAS  Google Scholar 

  24. Bo S, Durazzo M, Gambino R, et al. Associations of dietary and serum copper with inflammation, oxidative stress, and metabolic variables in adults. J Nutr. 2008;138(2):305–310. doi:https://doi.org/10.1093/jn/138.2.305

    Article  CAS  Google Scholar 

  25. Lin Z, Gao H, Wang B, Wang Y. Dietary Copper Intake and Its Association With Telomere Length: A Population Based Study. Front Endocrinol (Lausanne). 2018;9:404. Published 2018 Jul 30. doi:https://doi.org/10.3389/fendo.2018.00404

    Article  Google Scholar 

  26. Staerk L, Wang B, Lunetta KL, et al. Association Between Leukocyte Telomere Length and the Risk of Incident Atrial Fibrillation: The Framingham Heart Study. J Am Heart Assoc. 2017;6(11):e006541. Published 2017 Nov 14. doi:https://doi.org/10.1161/JAHA.-117.006541

    Article  Google Scholar 

  27. Caligiuri SP, Edel AL, Aliani M, Pierce GN. Flaxseed for hypertension: implications for blood pressure regulation. Curr Hypertens Rep. 2014;16(12):499. doi:https://doi.org/10.1007/s11906-014-0499-8

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan Huang or Jianghua Zhou.

Ethics declarations

The study protocols for NHANES approved by NCHS Research Ethics Review Board (Protocol#98-12). All participants provided written informed consent before participating in the study.

Additional information

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, H., Yu, Q., Yuan, M. et al. The Relationship between Dietary Copper intake and Telomere Length in Hypertension. J Nutr Health Aging 26, 510–514 (2022). https://doi.org/10.1007/s12603-022-1787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-022-1787-7

Key words

Navigation