Skip to main content
Log in

A Scoping Review of Dietary Factors Conferring Risk or Protection for Cognitive Decline in APOE ε4 Carriers

  • Review
  • Published:
The journal of nutrition, health & aging

Abstract

Alzheimer’s disease (AD) is a progressive and fatal neurodegenerative disease. The strongest genetic risk factor for sporadic AD is carriage of the ε4 allele of the Apolipoprotein E (APOE) gene. Strategies to slow the progression of AD, including dietary interventions, may be modified by the pathogenic effect of this polymorphism. Our objective in this review was to determine the extent and quality of the literature investigating how dietary factors and interventions interact with the APOE ε4 genotype to impact cognitive decline in AD. To that end, we performed a systematic scoping review of published English-language articles involving human subjects. We found evidence suggesting that adherence to a Mediterranean diet may reduce cognitive decline among APOE ε4 carriers, whereas ketogenic agents appear to be ineffective. Diets high in saturated fats may be particularly harmful for APOE ε4 carriers. We identified several topics, including the use of ω-3 fatty acid and antioxidant supplements, for which additional high level evidence is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. 2019 ALZHEIMER’S DISEASE FACTS AND FIGURES Includes a Special Report on Alzheimer’s Detection in the Primary Care Setting: Connecting Patients and Physicians.

  2. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science (80-.). 1993;261, 921–923; https://doi.org/10.1126/science.8346443.

    Article  CAS  Google Scholar 

  3. Cosentino, S. et al. APOE ε4 allele predicts faster cognitive decline in mild Alzheimer disease. Neurology 2008;70, 1842–1849; https://doi.org/10.1212/01.wnl.0000304038.37421.cc.

    Article  CAS  PubMed  Google Scholar 

  4. Bertram, L., McQueen, M. B., Mullin, K., Blacker, D. & Tanzi, R. E. Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database. Nat. Genet. 2007;39, 17–23; https://doi.org/10.1038/ng1934.

    Article  CAS  PubMed  Google Scholar 

  5. Yassine, H. N. & Finch, C. E. APOE Alleles and Diet in Brain Aging and Alzheimer’s Disease. Frontiers in Aging Neuroscience 2020;12, 150; https://doi.org/10.3389/fnagi.2020.00150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: A meta-analysis. J. Am. Med. Assoc. 1997;278, 1349–1356; https://doi.org/10.1001/jama.278.16.1349.

    Article  CAS  Google Scholar 

  7. Belloy, M. E., Napolioni, V. & Greicius, M. D. A Quarter Century of APOE and Alzheimer’s Disease: Progress to Date and the Path Forward. Neuron 2019;101, 820–838; https://doi.org/10.1016/j.neuron.2019.01.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Egert, S., Rimbach, G. & Huebbe, P. ApoE genotype: From geographic distribution to function and responsiveness to dietary factors. Proc. Nutr. Soc. 2012;71, 410–424; https://doi.org/10.1017/S0029665112000249.

    Article  CAS  PubMed  Google Scholar 

  9. Singh, P. P., Singh, M. & Mastana, S. S. APOE distribution in world populations with new data from India and the UK. Ann. Hum. Biol. 2006;33, 279–308; https://doi.org/10.1080/03014460600594513.

    Article  CAS  PubMed  Google Scholar 

  10. Prentice, A. M., Rayco-Solon, P. & Moore, S. E. Insights from the developing world: thrifty genotypes and thrifty phenotypes, 2020. doi:https://doi.org/10.1079/PNS2005421

  11. Hoyer, S. Age-Related Changes in Cerebral Oxidative Metabolism: Implications for Drug Therapy. Drugs Aging 1995;6, 210–218; https://doi.org/10.2165/00002512-199506030-00004.

    Article  CAS  PubMed  Google Scholar 

  12. Reiman, E. M. et al. Correlations between apolipoprotein E ε4 gene dose and brain-imaging measurements of regional hypometabolism. Proc. Natl. Acad. Sci. U. S. A. 2005;102, 8299–8302; https://doi.org/10.1073/pnas.0500579102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, L., Zhang, X. & Zhao, L. Human apoe isoforms differentially modulate brain glucose and ketone body metabolism: Implications for Alzheimer’s disease risk reduction and early intervention. J. Neurosci. 2018;38, 6665–6681; https://doi.org/10.1523/JNEUROSCI.2262-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michael Arribas-Ayllon. The Ethics of Disclosing Genetic Diagnosis for Alzheimer’s Disease: Do We Need a New Paradigm? — PubMed. Br Med Bull. 2011;100, 7–21; https://doi.org/10.1093/bmb/ldr023.

    Article  Google Scholar 

  15. Grill, J. D. Disclosing Risk Factors to Individuals Without Cognitive Impairment. Pract. Neurol. Mag. 2019;63, 63–66.

    Google Scholar 

  16. Green, R. C. et al. Disclosure of APOE genotype for risk of Alzheimer’s disease. N. Engl. J. Med. 2009;361, 245–254; https://doi.org/10.1056/NEJMoa0809578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hietaranta-Luoma, H.-L. et al. A Long-Term Follow-Up Study on Disclosing Genetic Risk Information (APOE) to Promote Healthy Lifestyles in Finland. Lifestyle Genomics 2018;11, 147–154; https://doi.org/10.1159/000500199.

    Article  CAS  PubMed  Google Scholar 

  18. Berkowitz, C. L. et al. Clinical Application of APOE in Alzheimer’s Prevention: A Precision Medicine Approach. J. Prev. Alzheimer’s Dis. 2018;5, 245–252; https://doi.org/10.14283/jpad.2018.35.

    CAS  Google Scholar 

  19. Lopez Lopez, C. et al. The Alzheimer’s Prevention Initiative Generation Program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. Alzheimer’s and Dementia: Translational Research and Clinical Interventions 2019;5, 216–227; https://doi.org/10.1016/j.trci.2019.02.005.

    PubMed  PubMed Central  Google Scholar 

  20. Pham, M. T. et al. A scoping review of scoping reviews: Advancing the approach and enhancing the consistency. Res. Synth. Methods 2014;5, 371–385; https://doi.org/10.1002/jrsm.1123.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tricco, A. C. et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018;169, 467; https://doi.org/10.7326/M18-0850.

    Article  PubMed  Google Scholar 

  22. Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019;20, 148–160; https://doi.org/10.1038/s41583-019-0132-6.

    Article  CAS  PubMed  Google Scholar 

  23. Dominguez, L. J. & Barbagallo, M. Nutritional prevention of cognitive decline and dementia. Acta Biomedica 2018;89, 276–290; https://doi.org/10.23750/abm.v89i2.7401.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Eshkoor, S. A., Hamid, T.A., Mun, C. Y. & Ng, C. K. Mild cognitive impairment and its management in older people. Clinical Interventions in Aging 2015;10, 687–693; https://doi.org/10.2147/CIA.S73922.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ramassamy, C. et al. Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer’s disease is related to the apolipoprotein E genotype. Free Radic. Biol. Med. 1999;27, 544–553; https://doi.org/10.1016/s0891-5849(99)00102-1.

    Article  CAS  PubMed  Google Scholar 

  26. Tamaoka, A. et al. Apolipoprotein E allele-dependent antioxidant activity in brains with Alzheimer’s disease. Neurology 2000;54, 2319–2321; https://doi.org/10.1212/wnl.54.12.2319.

    Article  CAS  PubMed  Google Scholar 

  27. Kharrazi, H. et al. Association between enzymatic and non-enzymatic antioxidant defense mechanism with apolipoprotein E genotypes in Alzheimer disease. Clin. Biochem. 2008;41, 932–936; https://doi.org/10.1016/j.clinbiochem.2008.05.001.

    Article  CAS  PubMed  Google Scholar 

  28. Dursun, E. et al. Vitamin D deficiency might pose a greater risk for ApoEε4 non-carrier Alzheimer’s disease patients. Neurol. Sci. 2016; 37, 1633–1643; https://doi.org/10.1007/s10072-016-2647-1.

    Article  PubMed  Google Scholar 

  29. Huang, X. et al. Diminished circulating retinol and elevated α-TOH/retinol ratio predict an increased risk of cognitive decline in aging Chinese adults, especially in subjects with ApoE2 or ApoE4 genotype. Aging (Albany. NY). 2018;10, 4066–1083.; https://doi.org/10.18632/aging.101694

    Article  CAS  Google Scholar 

  30. Bunce, D., Kivipelto, M. & Wahlin, Å. Utilization of Cognitive Support in Episodic Free Recall as a Function of Apolipoprotein E and Vitamin B12 or Folate among Adults Aged 75 Years and Older. Neuropsychology 2004;18, 362–370; https://doi.org/10.1037/0894-4105.18.2.362.

    Article  PubMed  Google Scholar 

  31. Nishimaki, K. et al. Effects of Molecular Hydrogen Assessed by an Animal Model and a Randomized Clinical Study on Mild Cognitive Impairment. Curr. Alzheimer Res. 2018;15, 482–492; https://doi.org/10.2174/1567205014666171106145017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Snitz, B. E. et al. Ginkgo biloba for preventing cognitive decline in older adults a randomized trial. JAMA — J. Am. Med. Assoc. 2009.302, 2663–2670; https://doi.org/10.1001/jama.2009.1913.

    Article  CAS  Google Scholar 

  33. Yasuno, F. et al. Combination of antioxidant supplements improved cognitive function in the elderly. J. Alzheimer’s Dis. 2012;32, 895–903; https://doi.org/10.3233/JAD-2012-121225.

    Article  CAS  Google Scholar 

  34. Engelhart, M. J. et al. Dietary intake of antioxidants and risk of Alzheimer disease. J. Am. Med. Assoc. 2002;287, 3223–3229; https://doi.org/10.1001/jama.287.24.3223.

    Article  CAS  Google Scholar 

  35. Goodwill, A. M. et al. Vitamin D status is associated with executive function a decade later: Data from the Women’s Healthy Ageing Project. Maturitas 2018;107, 56–62; https://doi.org/10.1016/j.maturitas.2017.10.005.

    Article  CAS  PubMed  Google Scholar 

  36. Morris, M. C. et al. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. J. Am. Med. Assoc. 2002;287, 3230–3237; https://doi.org/10.1001/jama.287.24.3230.

    Article  CAS  Google Scholar 

  37. Dai, Q., Borenstein, A. R., Wu, Y., Jackson, J. C. & Larson, E. B. Fruit and Vegetable Juices and Alzheimer’s Disease: The Kame Project. Am. J. Med. 2006;119, 751–759.; https://doi.org/10.1016/j.amjmed.2006.03.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maddock, J., Cavadino, A., Power, C. & Hyppönen, E. 25-Hydroxyvitamin D, APOE ε4 genotype and cognitive function: Findings from the 1958 British birth cohort. Eur. J. Clin. Nutr. 2015;69, 505–508; https://doi.org/10.1038/ejcn.2014.201.

    Article  CAS  PubMed  Google Scholar 

  39. Noguchi-Shinohara, M. et al. Higher Blood Vitamin C Levels are Associated with Reduction of Apolipoprotein e E4-related Risks of Cognitive Decline in Women: The Nakajima Study. J. Alzheimer’s Dis. 2018;63, 1289–1297; https://doi.org/10.3233/JAD-170971.

    Article  CAS  Google Scholar 

  40. Hu, P. et al. Association between serum beta-carotene levels and decline of cognitive function in high-functioning older persons with or without apolipoprotein E 4 alleles: MacArthur studies of successful aging. J. Gerontol. A. Biol. Sci. Med. Sci. 2006;61, 616–620; https://doi.org/10.1093/gerona/61.6.616.

    Article  PubMed  Google Scholar 

  41. Zheng, Y. et al. Lysosomal Proteases Are a Determinant of Coronavirus Tropism. J. Virol. 2018;92; https://doi.org/10.1128/JVI.01504-18.

  42. Changzheng Yuan, 1,2,3 Elinor Fondell,2,3 Alberto Ascherio,2,3,4 Olivia I Okereke,3,4,5 Francine Grodstein,3,4 & Albert Hofman, 4,6 and Walter C Willett2,. Long-Term Intake of Dietary Carotenoids Is Positively Associated with Late-Life Subjective Cognitive Function in a Prospective Study in US Women. The Journal of Nutrition https://doi.org/10.1093/jn/nxaa087. J. Nutr. 2020; https://doi.org/10.1093/jn/nxaa087.

  43. Miller JW, Harvey DJ, Beckett LA, Green R, Farias ST, Reed BR, Olichney JM, Mungas DM, DeCarli C (2015) Vitamin D Status and Rates of Cognitive Decline in a Multiethnic Cohort of Older Adults. JAMA Neurol 72:1295; https://doi.org/10.1001/jamaneurol.2015.2115

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huebbe, P. et al. APOE ε 4 is associated with higher vitamin D levels in targeted replacement mice and humans. FASEB J. 2011; 25, 3262–3270; https://doi.org/10.1096/fj.11-180935.

    Article  CAS  PubMed  Google Scholar 

  45. Chouinard-Watkins, R. et al. Disturbance in uniformly 13C-labelled DHA metabolism in elderly human subjects carrying the apoE Î4 allele. Br. J. Nutr. 2013;110, 1751–1759; https://doi.org/10.1017/S0007114513001268

    Article  CAS  PubMed  Google Scholar 

  46. Stonehouse, W. et al. DHA supplementation improved both memory and reaction time in healthy young adults: A randomized controlled trial. Am. J. Clin. Nutr. 2013;97, 1134–1143; https://doi.org/10.3945/ajcn.112.053371

    Article  CAS  PubMed  Google Scholar 

  47. Quinn, J. F. et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: A randomized trial. JAMA — J. Am. Med. Assoc. 2010;304, 1903–1911; https://doi.org/10.1001/jama.2010.1510.

    Article  CAS  Google Scholar 

  48. Van De Rest, O. et al. Effect of fish oil on cognitive performance in older subjects: A randomized, controlled trial. Neurology 2008;71, 430–438; https://doi.org/10.1212/01.wnl.0000324268.45138.86

    Article  CAS  PubMed  Google Scholar 

  49. D., L., R., V., J., L., É., D. & B.J., H. Omega-3 fatty acids and risk of cognitive impairment and dementia. J. Alzheimer’s Dis. 2003;5, 315–322; https://doi.org/10.3233/jad-2003-5407

    Article  Google Scholar 

  50. May A Beydoun 1, Jay S Kaufman, Jessie A Satia, Wayne Rosamond, A. R. F. Plasma n-3 Fatty Acids and the Risk of Cognitive Decline in Older Adults: The Atherosclerosis Risk in Communities Study — PubMed. American Journal of Clinical Nutrition (2007). Available at: https://pubmed.ncbi.nlm.nih.gov/17413112/. (Accessed: 7th May 2020); https://doi.org/10.1093/ajcn/85.4.1103

  51. Whalley, L. J. et al. n-3 Fatty acid erythrocyte membrane content, APOE 4, and cognitive variation: an observational follow-up study in late adulthood 2008;1-3. Am J Clin Nutr 87; https://doi.org/10.1093/ajcn/87.2.449.

  52. Kröger, E. et al. Omega-3 fatty acids and risk of dementia: The Canadian Study of Health and Aging. Am. J. Clin. Nutr. 2009;90, 184–192; https://doi.org/10.3945/ajcn.2008.26987.

    Article  PubMed  Google Scholar 

  53. Samieri, C. et al. Omega-3 fatty acids and cognitive decline: Modulation by ApoEε4 allele and depression. Neurobiol. Aging 2011;32, 2317.e13–2317.e22; https://doi.org/10.1016/j.neurobiolaging.2010.03.02

    Article  CAS  Google Scholar 

  54. Rönnemaa, E. et al. Serum fatty-acid composition and the risk of Alzheimers disease: A longitudinal population-based study. Eur. J. Clin. Nutr. 2012;66, 885–890;0; https://doi.org/10.1038/ejcn.2012.63.

    Article  PubMed  Google Scholar 

  55. Laitinen, M. H. et al. Fat intake at midlife and risk of dementia and Alzheimer’s disease: A population-based study. Dement. Geriatr. Cogn. Disord. 2006;22, 99–107; https://doi.org/10.1159/000093478

    Article  CAS  PubMed  Google Scholar 

  56. Kivipelto, M. et al. Apolipoprotein e ε4 magnifies lifestyle risks for dementia: A population-based study. J. Cell. Mol. Med. 2008;12, 2762–2771; https://doi.org/10.1111/j.1582-4934.2008.00296.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Laurin, D., Verreault, R., Lindsay, J., Dewailly, É. & Holub, B. J. Omega-3 fatty acids and risk of cognitive impairment and dementia. J. Alzheimer’s Dis. 2003;5, 315–322; https://doi.org/10.3233/jad-2003-5407.

    Article  CAS  Google Scholar 

  58. Conway, V. et al. Apolipoprotein E isoforms disrupt long-chain fatty acid distribution in the plasma, the liver and the adipose tissue of mice. Prostaglandins Leukot. Essent. Fat. Acids 2014;91, 261–267; https://doi.org/10.1016/j.plefa.2014.09.007.

    Article  CAS  Google Scholar 

  59. Nock, T. G. et al. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochimica et Biophysica Acta — Molecular and Cell Biology of Lipids 2017;1862, 1068–1078; https://doi.org/10.1016/j.bbalip.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  60. Chouinard-Watkins, R. et al. Docosahexaenoic acid prevents cognitive deficits in human apolipoprotein E epsilon 4-targeted replacement mice. Neurobiol. Aging 2017;57, 28–35; https://doi.org/10.1016/j.neurobiolaging.2017.05.003.

    Article  CAS  PubMed  Google Scholar 

  61. Huang, T. L. et al. Benefits of fatty fish on dementia risk are stronger for those without APOE ε4. Neurology 2005;65, 1409–1414; https://doi.org/10.1212/01.wnl.0000183148.34197.2e.

    Article  CAS  PubMed  Google Scholar 

  62. Barberger-Gateau, P. et al. Dietary patterns and risk of dementia: The Three-City cohort study. Neurology 2007;69, 1921–1930; https://doi.org/10.1212/01.wnl.0000278116.37320.52

    Article  CAS  PubMed  Google Scholar 

  63. Samieri, C. et al. Original Contribution Fish Intake, Genetic Predisposition to Alzheimer Disease, and Decline in Global Cognition and Memory in 5 Cohorts of Older Persons. 187; https://doi.org/10.1093/aje/kwx330.

  64. Daiello, L. A., Gongvatana, A., Dunsiger, S., Cohen, R. A. & Ott, B. R. Association of fish oil supplement use with preservation of brain volume and cognitive function. Alzheimer’s Dement. 2015;11, 226–235; https://doi.org/10.1016/j.jalz.2014.02.005.

    Article  Google Scholar 

  65. Danthiir, V. et al. Cognitive Performance in Older Adults Is Inversely Associated with Fish Consumption but Not Erythrocyte Membrane n-3 Fatty Acids. J. Nutr. 2014;144, 311–320; https://doi.org/10.3945/jn.113.175695.

    Article  CAS  PubMed  Google Scholar 

  66. Van De Rest, O. et al. APOE e4 and the associations of seafood and long-chain omega-3 fatty acids with cognitive decline. Neurology 2016;86, 2063–2070; https://doi.org/10.1212/WNL.0000000000002719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Samieri, C. et al. Relationship between diet and plasma long-chain n-3 PUFAs in older people: Impact of apolipoprotein e genotype. J. Lipid Res. 2013;54, 2559–2567; https://doi.org/10.1194/jlr.P036475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singh, B. et al. Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Journal of Alzheimer’s Disease 2014;39, 271–282; https://doi.org/10.3233/JAD-130830.

    Article  PubMed  Google Scholar 

  69. Martinez-Lapiscina, E. H. et al. Virgin olive oil supplementation and long-term cognition: The Predimed-Navarra randomized, trial. J. Nutr. Heal. Aging 2013;17, 544–552; https://doi.org/10.1007/s12603-013-0027-6.

    Article  CAS  Google Scholar 

  70. Martínez-Lapiscina, E. H. et al. Genotype patterns at CLU, CR1, PICALM and APOE, cognition and Mediterranean diet: The PREDIMED-NAVARRA trial. Genes Nutr. 2014;9; https://doi.org/10.1007/s12263-014-0393-7.

  71. Valls-Pedret, C. et al. Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern. Med. 2015;175, 1094–1103; https://doi.org/10.1001/jamainternmed.2015.1668.

    Article  PubMed  Google Scholar 

  72. Solomon, A. et al. Effect of the apolipoprotein e genotype on cognitive change during a multidomain lifestyle intervention a subgroup analysis of a randomized clinical trial. JAMA Neurol. 2018;75, 462–470; https://doi.org/10.1001/jamaneurol.2017.4365.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gardener, S. L. et al. Dietary patterns and cognitive decline in an Australian study of ageing. Mol. Psychiatry 2015;20, 860–866

    Article  CAS  PubMed  Google Scholar 

  74. Keenan, T. D. et al. Adherence to a Mediterranean diet and cognitive function in the Age-Related Eye Disease Studies 1 & 2. Alzheimer’s Dement. 2020. doi:https://doi.org/10.1002/alz.12077; https://doi.org/10.1002/alz.12077

  75. Dreon, D. M., Fernstrom, H. A., Miller, B. & Krauss, R. M. Apolipoprotein E Isoform Phenotype and LDL Subclass Response to a Reduced-Fat Diet. Arterioscler. Thromb. Vasc. Biol. 1995;15, 105–111; https://doi.org/10.1161/01.atv.15.1.105.

    Article  CAS  PubMed  Google Scholar 

  76. Ylilauri, M. P. T. et al. Association of dietary cholesterol and egg intakes with the risk of incident dementia or Alzheimer disease: The Kuopio Ischaemic Heart Disease Risk Factor Study. Am. J. Clin. Nutr. 2017;105, 476–484; https://doi.org/10.3945/ajcn.116.146753.

    Article  CAS  PubMed  Google Scholar 

  77. An, Y. et al. Longitudinal and nonlinear relations of dietary and Serum cholesterol in midlife with cognitive decline: Results from EMCOA study. Mol. Neurodegener. 2019;14; https://doi.org/10.1186/s13024-019-0353-1.

  78. Salerno-Kennedy, R. & Cashman, K. D. The relationship between nutrient intake and cognitive performance in people at risk of dementia. Ir. J. Med. Sci. 2007;176, 193–198; https://doi.org/10.1007/s11845-007-0036-8.

    Article  CAS  PubMed  Google Scholar 

  79. Eskelinen, M. H. et al. Fat intake at midlife and cognitive impairment later in life: A population-based CAIDE study. Int. J. Geriatr. Psychiatry 2008;23, 741–747; https://doi.org/10.1002/gps.1969.

    Article  PubMed  Google Scholar 

  80. Luchsinger, J. A., Tang, M. X., Shea, S. & Mayeux, R. Caloric intake and the risk of Alzheimer disease. Arch. Neurol. 2002;59, 1258–1263; https://doi.org/10.1001/archneur.59.8.1258.

    Article  PubMed  Google Scholar 

  81. Hanson, A. J. et al. Differential effects of meal challenges on cognition, metabolism, and biomarkers for apolipoprotein Eβ 4 carriers and adults with mild cognitive impairment. J. Alzheimer’s Dis. 2015;48, 205–218; https://doi.org/10.3233/JAD-150273

    Article  CAS  Google Scholar 

  82. Cunnane, S. et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011;27, 3–20; https://doi.org/10.1016/j.nut.2010.07.021.

    Article  CAS  PubMed  Google Scholar 

  83. Sharma, A., Bemis, M. & Desilets, A. R. Role of medium chain triglycerides (Axona®) in the treatment of mild to moderate alzheimer’s disease. American Journal of Alzheimer’s Disease and other Dementias 2014;29, 409–414; https://doi.org/10.1177/1533317513518650.

    Article  PubMed  Google Scholar 

  84. Henderson, S. T. Ketosis in Mild Cognitive Impairment and Alzheimer’s Disease. in Diet and Nutrition in Dementia and Cognitive Decline, Elsevier Inc. 2015;447-456

  85. Broom, G. M., Shaw, I. C. & Rucklidge, J. J. The ketogenic diet as a potential treatment and prevention strategy for Alzheimer’s disease. Nutrition 2019;60, 118–121; https://doi.org/10.1016/j.nut.2018.10.003.

    Article  CAS  PubMed  Google Scholar 

  86. Morrill, S. J. & Gibas, K. J. Ketogenic diet rescues cognition in ApoE4+ patient with mild Alzheimer’s disease: A case study. Diabetes Metab. Syndr. Clin. Res. Rev. 2019;13, 1187–1191; https://doi.org/10.1016/j.dsx.2019.01.035

    Article  Google Scholar 

  87. Stoykovich, S. & Gibas, K. APOE ε4, the door to insulin-resistant dyslipidemia and brain fog? A case study. 2019; https://doi.org/10.1016/j.dadm.2019.01.009.

  88. Brown, D. & Gibas, K. J. Metabolic syndrome marks early risk for cognitive decline with APOE4 gene variation: A case study. Diabetes Metab. Syndr. Clin. Res. Rev. 12, 2018;823–827; https://doi.org/10.1016/j.dsx.2018.04.030

    Article  Google Scholar 

  89. Henderson, S. T. et al. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: A randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. 2009;6; https://doi.org/10.1186/1743-7075-6-31.

  90. Henderson, S. T. & Poirier, J. Pharmacogenetic analysis of the effects of polymorphisms in APOE, IDE and IL1B on a ketone body based therapeutic on cognition in mild to moderate Alzheimer’s disease; a randomized, double-blind, placebo-controlled study. BMC Med. Genet. 2011;12; https://doi.org/10.1186/1471-2350-12-137.

  91. Reger, M. A. et al. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 2004;25, 311–314; https://doi.org/10.1016/S0197-4580(03)00087-3

    Article  CAS  PubMed  Google Scholar 

  92. Henderson, S. T., Morimoto, B. H., Cummings, J. L., Farlow, M. R. & Walker, J. A Placebo-Controlled, Parallel Group, Randomized Clinical Trial of AC-1204 in Mild-to-Moderate Alzheimer’s Disease. J. Alzheimer’s Dis. 2020;1-11; https://doi.org/10.3233/JAD-191302.

  93. Taylor, M. K., Sullivan, D. K., Mahnken, J. D., Burns, J. M. & Swerdlow, R. H. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2018;4, 28–36; https://doi.org/10.1016/j.trci.2017.11.002.

    Article  Google Scholar 

  94. Livingston, G. et al. The Lancet Commissions Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020;396, 413–446; https://doi.org/10.1016/S0140-6736(20)30367-6.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rubin, J. & Berglund, L. Apolipoprotein E and diets: A case of gene-nutrient interaction? Curr. Opin. Lipidol. 2002;13, 25–32; https://doi.org/10.1097/00041433-200202000-00005.

    Article  CAS  PubMed  Google Scholar 

  96. Lindsey F Masson, Geraldine McNeill, and A. A. Genetic variation and the lipid response to dietary intervention: asystematic review. Am J Clin Nutr 2003;77, 1098–111; https://doi.org/10.1093/ajcn/77.5.1098

    Article  Google Scholar 

  97. Anil, E. The impact of EPA and DHA on blood lipids and lipoprotein metabolism: Influence of apoE genotype. in Proceedings of the Nutrition Society 2007;66, 60–68 (Proc Nutr Soc).; https://doi.org/10.1017/S0029665107005307.

    Article  CAS  Google Scholar 

  98. Minihane, A. M. et al. ApoE polymorphism and fish oil supplementation in subjects with an atherogenic lipoprotein phenotype. Arterioscler. Thromb. Vasc. Biol. 2000;20, 1990–1997; https://doi.org/10.1161/01.atv.20.8.1990.

    Article  CAS  PubMed  Google Scholar 

  99. Olano-Martin, E. et al. Contribution of apolipoprotein E genotype and docosahexaenoic acid to the LDL-cholesterol response to fish oil. Atherosclerosis 2010;209, 104–110; https://doi.org/10.1016/j.atherosclerosis.2009.08.024.

    Article  CAS  PubMed  Google Scholar 

  100. Reed, B. et al. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 2014;71, 195–200; https://doi.org/10.1001/jamaneurol.2013.5390

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ball, M., Geekie, M., Carter, R., Benfield, L. & Fisher, K. Effect of dietary cholesterol on plasma cholesterol concentration in subjects following reduced fat, high fibre diet. Br. Med. J. (Clin. Res. Ed). 1987;294, 333–336; https://doi.org/10.1136/bmj.294.6568.333.

    Article  Google Scholar 

  102. Yassine, H. N. et al. Association of docosahexaenoic acid supplementation with Alzheimer disease stage in Apolipoprotein e ε4 carriers: A review. JAMA Neurology 2017;74, 339–347; https://doi.org/10.1001/jamaneurol.2016.4899.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Arellanes, I. C. et al. Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial. EBioMedicine 2020;59; https://doi.org/10.1016/j.ebiom.2020.102883

Download references

Acknowledgements

This project was funded by NIH as follows: 1F30AG060704-01A1 (to G.M.F.), T32GM008620 (to G.M.F.), T32AG000096 (to G.M.F.). Funding to G.M.F. from the Lorna Carlin Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions: G.M.F. and J.S.S. designed the study. G.M.F. and N.R.G. conducted systematic searches. G.M.F., N.R.G., A.M.R.O., L.M.T., J.D.G., and J.S.S. wrote the manuscript.

Corresponding authors

Correspondence to Gianna M. Fote or Joshua D. Grill.

Ethics declarations

Statement of competing interests: The authors have no financial or non-financial competing interests to report.

Ethical standards: This study adhered to the PRISMA guidelines for scoping reviews. The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fote, G.M., Geller, N.R., Reyes-Ortiz, A.M. et al. A Scoping Review of Dietary Factors Conferring Risk or Protection for Cognitive Decline in APOE ε4 Carriers. J Nutr Health Aging 25, 1167–1178 (2021). https://doi.org/10.1007/s12603-021-1705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-021-1705-4

Key words

Navigation