Skip to main content
Log in

Genetic variants of the FADS gene cluster are associated with erythrocyte membrane LC PUFA levels in patients with mild cognitive impairment

  • Published:
The journal of nutrition, health & aging

Abstract

Background

Long-chain (> 20 C-atoms) polyunsaturated fatty acids (LC PUFAs) of both the omega-6 (n-6) and omega-3 (n-3) series are important for the functional integrity of brain and thereby cognition, memory and mood. Clinical studies observed associations between altered LC PUFA levels and neurodegenerative diseases such as Alzheimer´s disease and its prodromal stage, mild cognitive impairment (MCI).

Methods

The present study examined the LC PUFA status of MCI patients with specific view on the relative LC n-3 PUFA levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in erythrocyte membranes (omega-3 index). 12 single nucleotide polymorphisms (SNPs) of the FADS1, FADS2, and FADS3 gene clusters were genotyped in 111 MCI patients and evaluated associations with PUFA levels in erythrocyte membranes (primary outcome). In addition, the associations between FADS SNPs and LC PUFA levels with serum lipid levels as well as depressive symptoms were examined (secondary outcomes).

Results

Minor allele carrier of rs174546, rs174548 (FADS1), rs3834458, rs1535, rs174574, rs174575, rs174576, and rs174578 (FADS2) showed significant higher n-6 and n-3 precursor PUFA levels (linoleic acid, and alpha-linolenic acid, respectively) and lower arachidonic acid (AA) levels in erythrocyte membranes compared to the major allele carriers. Differences in EPA and DHA levels were not significant. Minor allele carriers of rs174574, rs174576 and rs174578 (FADS2) and rs174455 (FADS3) exhibited significant higher triglyceride levels, whereas minor allele carriers for rs174449 and rs174455 (FADS3) exhibited significant higher total- and LDL-cholesterol levels compared to the more common variant. The mean omega-3 index of the study cohort was 6.19 ± 1.55 %. In more than 85 % of the patients, the omega-3 index was below 8 % and in 23 % below 5 %. Moreover, it was shown that a low DHA status and omega-3 index was associated with depressive symptoms (Beck’s depression-inventory).

Discussion and conclusion

These findings indicate an association between several FADS genotypes for higher n-6 and n-3 precursor PUFA and lower AA levels in erythrocyte membranes in minor compared to major allele carriers. To what extent FADS genotypes and a lower conversion of LA and ALA to biologically important LC PUFAs such as AA, EPA and DHA contributes to cognitive decline should be investigated in further trials. Nevertheless, the omega-3 index in this cohort of MCI patients can be classified as insufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Table 2
Table 3
Figure 1
Figure 2
Figure 3
Table 4
Table 5

Similar content being viewed by others

References

  1. Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer’s disease. Arch Med Res 2012; 43: 600–608.

    Article  PubMed  Google Scholar 

  2. Qiu C, Kivipelto M, Strauss E von. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11: 111–128.

    PubMed  PubMed Central  Google Scholar 

  3. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15: 771–785.

    Article  CAS  PubMed  Google Scholar 

  4. Luchtman DW, Song C. Cognitive enhancement by omega-3 fatty acids from childhood to old age: findings from animal and clinical studies. Neuropharmacol 2013; 64: 550–565.

    Article  CAS  Google Scholar 

  5. Janssen, Carola I F, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 2014; 53: 1–17.

    Article  CAS  PubMed  Google Scholar 

  6. Dacks PA, Shineman DW, Fillit HM. Current evidence for the clinical use of longchain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer’s disease. J Nutr Health Aging 2013; 17: 240–251.

    Article  CAS  PubMed  Google Scholar 

  7. Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH. Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 2000; 35: 1305–1312.

    Article  CAS  PubMed  Google Scholar 

  8. Kyle DJ, Schaefer E, Patton G, Beiser A. Low serum docosahexaenoic acid is a significant risk factor for Alzheimer’s dementia. Lipids 1999; 34 Suppl: S245.

    Article  CAS  PubMed  Google Scholar 

  9. Milte CM, Sinn N, Street SJ, Buckley JD, Coates AM, Howe PR. Erythrocyte polyunsaturated fatty acid status, memory, cognition and mood in older adults with mild cognitive impairment and healthy controls. Prostaglandins Leukot Essent Fatty Acids 2011; 84: 153–161.

    Article  CAS  PubMed  Google Scholar 

  10. Lee LK, Shahar S, Chin A et al. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): a 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2013; 225(3): 605–612.

    Article  CAS  Google Scholar 

  11. Sinn N, Milte CM, Street SJ, Buckley JD, Coates AM, Petkov J et al. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br J Nutr 2012; 107: 1682–1693.

    Article  CAS  PubMed  Google Scholar 

  12. Vellas B, Carrie I, Gillette-Guyonnet S et al. MAPT study: A multidomain approach for preventing alzheimer’s disease: design and baseline data. J Prev Alz Dis 2014; 1(1): 13–22.

    Google Scholar 

  13. DGE, Deutsche Gesellschaft für Ernährung (2012) 12. Ernährungsbericht

    Google Scholar 

  14. Tosi F, Sartori F, Guarini P, Olivieri O, Martinelli N. Delta-5 and delta-6 desaturases: crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv Exp Med Biol 2014; 824: 61–81.

    Article  CAS  PubMed  Google Scholar 

  15. Marquardt A, Stöhr H, White K, Weber BH. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics 2000; 66: 175–183.

    Article  CAS  PubMed  Google Scholar 

  16. Cho HP, Nakamura M, Clarke SD. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem 1999; 274: 37335–37339

    Article  CAS  PubMed  Google Scholar 

  17. Cho HP, Nakamura MT, Clarke SD. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem 1999; 274: 471–477

    Article  CAS  PubMed  Google Scholar 

  18. Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP et al. ENGAGE Consortium. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 2009; 41: 47–55.

    Article  CAS  PubMed  Google Scholar 

  19. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42: 105–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lattka E, Illig T, Heinrich J, Koletzko B. FADS gene cluster polymorphisms: important modulators of fatty acid levels and their impact on atopic diseases. J Nutrigenet Nutrigenomics 2009; 2: 119–128.

    Article  CAS  PubMed  Google Scholar 

  21. Martinelli N, Girelli D, Malerba G, Guarini P, Illig T, Trabetti E et al. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr 2008; 88: 941–949.

    CAS  PubMed  Google Scholar 

  22. Caspi A, Williams B, Kim-Cohen J, Craig IW, Milne BJ, Poulton R et al. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci USA 2007; 104: 18860–18865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brookes KJ, Chen W, Xu X, Taylor E, Asherson P. Association of fatty acid desaturase genes with attention-deficit/hyperactivity disorder. Biol Psychiatry 2006; 60: 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  24. Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 1989; 39: 1159–1165.

    Article  CAS  PubMed  Google Scholar 

  25. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56: 303–308.

    Article  CAS  PubMed  Google Scholar 

  26. Harris WS, von Schacky C. The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev Med 2004; 39: 212–220.

    Article  CAS  PubMed  Google Scholar 

  27. O’Dwyer L, Lamberton F, Matura S. Tanner C, Scheibe M, Miller J et al. Reduced hippocampal volume in healthy young ApoE4 carriers: an MRI study. PLoS ONE 2012; 7: e48895.

    Article  Google Scholar 

  28. Malerba G, Schaeffer L, Xumerle L, Klopp N, Trabetti E, Biscuola M et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids 2008; 43: 289–299.

    Article  CAS  PubMed  Google Scholar 

  29. Schaeffer L, Gohlke H, Müller M, Heid IM, Palmer LJ, Kompauer I et al. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet 2006; 15: 1745–1756.

    Article  CAS  PubMed  Google Scholar 

  30. Bokor S, Dumont J, Spinneker A, Gonzalez-Gross M, Nova E, Widhalm K et al. HELENA Study Group. Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J Lipid Res 2010; 51: 2325–2333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xie L, Innis SM. Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J. Nutr. 2008; 138: 2222–2228.

    Article  CAS  PubMed  Google Scholar 

  32. Rzehak P, Heinrich J, Klopp N, Schaeffer L, Hoff S, Wolfram G et al. Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr 2009; 101: 20–26.

    Article  CAS  PubMed  Google Scholar 

  33. Hellstrand S, Sonestedt E, Ericson U, Gullberg B, Wirfält E, Hedblad B et al. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. J Lipid Res 2012; 53: 1183–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cormier H, Rudkowska I, Paradis A, Thifault E, Garneau V, Lemieux S et al. Association between polymorphisms in the fatty acid desaturase gene cluster and the plasma triacylglycerol response to an n-3 PUFA supplementation. Nutrients 2012; 4: 1026–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pirillo A, Catapano AL. Omega-3 polyunsaturated fatty acids in the treatment of atherogenic dyslipidemia. Atheroscler Suppl 2013; 14: 237–242.

    Article  PubMed  Google Scholar 

  36. Kim M, Nam JH, Oh DH, Park Y. Erythrocyte α-linolenic acid is associated with the risk for mild dementia in Korean elderly. Nutr Res 2010; 30: 756–761.

    Article  CAS  PubMed  Google Scholar 

  37. Laurin D, Verreault R, Lindsay J, Dewailly E, Holub BJ. Omega-3 fatty acids and risk of cognitive impairment and dementia. J Alzheimers Dis 2003; 5: 315–322.

    CAS  PubMed  Google Scholar 

  38. Bora E, Harrison BJ, Yücel M, Pantelis C. Cognitive impairment in euthymic major depressive disorder: a meta-analysis. Psychol Med 2013; 43: 2017–2026.

    Article  CAS  PubMed  Google Scholar 

  39. McIntyre RS, Cha DS, Soczynska JK, Woldeyohannes HO, Gallaugher LA, Kudlow P et al. Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depress Anxiety 2013; 30: 515–527.

    Article  PubMed  Google Scholar 

  40. Bountziouka V, Polychronopoulos E, Zeimbekis A, Papavenetiou E, Ladoukaki E, Papairakleous N et al. Long-term fish intake is associated with less severe depressive symptoms among elderly men and women: the MEDIS (MEDiterranean ISlands Elderly) epidemiological study. J Aging Health 2009; 21: 864–880.

    Article  PubMed  Google Scholar 

  41. Murakami K, Miyake Y, Sasaki S, Tanaka K, Arakawa M. Fish and n-3 polyunsaturated fatty acid intake and depressive symptoms: Ryukyus Child Health Study. Pediatrics 2010; 126: e623–30.

    Article  Google Scholar 

  42. Pottala JV, Talley JA, Churchill SW, Lynch DA, von Schacky C, Harris WS. Red blood cell fatty acids are associated with depression in a case-control study of adolescents. Prostaglandins Leukot Essent Fatty Acids 2012; 86: 161–165.

    Article  CAS  PubMed  Google Scholar 

  43. Witte AV, Kerti L, Hermannstädter HM, Fiebach JB, Schreiber SJ, Schuchardt JP et al. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex 2014; 24: 3059–3068.

    Article  PubMed  Google Scholar 

  44. Schacky C von. Omega-3 index and cardiovascular health. Nutrients 2014; 6: 799–814.

    Article  Google Scholar 

  45. Baghai TC, Varallo-Bedarida G, Born C, Häfner S, Schüle C, Eser D et al. Major depressive disorder is associated with cardiovascular risk factors and low Omega-3 Index. J Clin Psychiatry 2011; 72: 1242–1247.

    Article  CAS  PubMed  Google Scholar 

  46. Johnston DT, Deuster PA, Harris WS, Macrae H, Dretsch MN. Red blood cell omega-3 fatty acid levels and neurocognitive performance in deployed U.S. Servicemembers. Nutr Neurosci 2013; 16: 30–38.

    Article  CAS  PubMed  Google Scholar 

  47. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet 2012; 90: 7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Philipp Schuchardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuchardt, J.P., Köbe, T., Witte, V. et al. Genetic variants of the FADS gene cluster are associated with erythrocyte membrane LC PUFA levels in patients with mild cognitive impairment. J Nutr Health Aging 20, 611–620 (2016). https://doi.org/10.1007/s12603-016-0720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-016-0720-3

Key words

Navigation