Skip to main content

Advertisement

Log in

Vismodegib Potentiates Marine Antimicrobial Peptide Tilapia Piscidin 4-Induced Cytotoxicity in Human Non-Small Cell Lung Cancer Cells

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Non-small cell lung cancer (NSCLC) is a common cancer with several accepted treatments, such as chemotherapy, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, and immune checkpoint inhibitors. Nevertheless, NSCLC cells often become insensitive to these treatments, and therapeutic resistance is a major reason NSCLC still has a high mortality rate. The induction of therapeutic resistance in NSCLC often involves hedgehog, and suppression of hedgehog can increase NSCLC cell sensitivity to several conventional therapies. In our previous work, we demonstrated that the marine antimicrobial peptide tilapia piscidin 4 (TP4) exhibits potent anti-NSCLC activity in both EGFR-WT and EGFR-mutant NSCLC cells. Here, we sought to further explore whether hedgehog might influence the sensitivity of NSCLC cells to TP4. Our results showed that hedgehog was activated by TP4 in both WT and EGFR-mutant NSCLC cells and that pharmacological inhibition of hedgehog by vismodegib, a Food and Drug Administration-approved hedgehog inhibitor, potentiated TP4-induced cytotoxicity. Mechanistically, vismodegib acted by enhancing TP4-mediated increases in mitochondrial membrane potential and intracellular reactive oxygen species (ROS). MitoTempo, a specific mitochondrial ROS scavenger, abolished vismodegib/TP4 cytotoxicity. The combination of vismodegib with TP4 also reduced the levels of the antioxidant proteins catalase and superoxide dismutase, and it diminished the levels of chemoresistance-related proteins, Bcl-2 and p21. Thus, we conclude that hedgehog regulates the cytotoxic sensitivity of NSCLC cells to TP4 by protecting against mitochondrial dysfunction and suppressing oxidative stress. These findings suggest that combined treatment of vismodegib and TP4 may be a promising therapeutic strategy for NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data is provided within the manuscript or supplementary information files.

References

  1. Casal-Mourino A, Ruano-Ravina A, Lorenzo-Gonzalez M et al (2021) Epidemiology of stage III lung cancer: frequency, diagnostic characteristics, and survival. Transl Lung Cancer Res 10(1):506–518. https://doi.org/10.21037/tlcr.2020.03.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen RQ, Manochakian R, James L et al (2020) Emerging therapeutic agents for advanced non-small cell lung cancer. J Hematol Oncol 13(1):58. https://doi.org/10.1186/s13045-020-00881-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hochmair MJ (2020) Resistance to chemoimmunotherapy in non-small-cell lung cancer. Cancer Drug Resist 3(3):445–453. https://doi.org/10.20517/cdr.2020.09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng Y, Zhang T, Xu Q (2021) Therapeutic advances in non-small cell lung cancer: Focus on clinical development of targeted therapy and immunotherapy. MedComm (2020) 2(4):692–729. https://doi.org/10.1002/mco2.105

    Article  PubMed  Google Scholar 

  5. West H, McCleod M, Hussein M et al (2019) Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 20(7):924–937. https://doi.org/10.1016/S1470-2045(19)30167-6

    Article  CAS  PubMed  Google Scholar 

  6. Wu Q, Luo WX, Li W et al (2021) First-generation EGFR-TKI plus chemotherapy versus EGFR-TKI alone as first-line treatment in advanced NSCLC With EGFR activating mutation: a systematic review and meta-analysis of randomized controlled trials. Front Oncol 11:598265. https://doi.org/10.3389/fonc.2021.598265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu WJ, Du Y, Wen R, Yang M, Xu J (2020) Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol Therapeut. 206:107438. https://doi.org/10.1016/j.pharmthera.2019.107438

    Article  CAS  Google Scholar 

  8. Aredo JV, Wakelee HA, Neal JW, Padda SK (2022) Afatinib after progression on osimertinib in EGFR-mutated non-small cell lung cancer. Cancer Treat Res Commun 30:100497. https://doi.org/10.1016/j.ctarc.2021.100497

    Article  PubMed  Google Scholar 

  9. Liao W, Huang J, Hutton D, Li Q (2019) Cost-effectiveness analysis of first-line pembrolizumab treatment for PD-L1 positive, non-small cell lung cancer in China. J Med Econ 22(4):344–349. https://doi.org/10.1080/13696998.2019.1570221

    Article  PubMed  Google Scholar 

  10. Wang J, Cui B, Li X et al (2023) The emerging roles of Hedgehog signaling in tumor immune microenvironment. Front Oncol 13:1171418. https://doi.org/10.3389/fonc.2023.1171418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giroux-Leprieur E, Costantini A, Ding VW, He BA (2018) Hedgehog signaling in lung cancer: from oncogenesis to cancer treatment resistance. Int J Mol Sci 19(9):2835. https://doi.org/10.3390/ijms19092835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kurita S, Mott JL, Cazanave SC et al (2011) Hedgehog inhibition promotes a switch from type II to Type I cell death receptor signaling in cancer cells. PLoS ONE 6(3):e18330. https://doi.org/10.1371/journal.pone.0018330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tu YC, Yeh WC, Yu HH, Lee YC, Su BC (2022) Hedgehog suppresses paclitaxel sensitivity by regulating Akt-mediated phosphorylation of bax in EGFR wild-type non-small cell lung cancer cells. Front Pharmacol 13:815308. https://doi.org/10.3389/fphar.2022.815308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Po A, Citarella A, Catanzaro G et al (2020) Hedgehog-GLI signalling promotes chemoresistance through the regulation of ABC transporters in colorectal cancer cells. Sci Rep-Uk 10(1):13988. https://doi.org/10.1038/s41598-020-70871-9

    Article  CAS  Google Scholar 

  15. Onishi H, Katano M (2011) Hedgehog signaling pathway as a therapeutic target in various types of cancer. Cancer Sci 102(10):1756–1760. https://doi.org/10.1111/j.1349-7006.2011.02010.x

    Article  CAS  PubMed  Google Scholar 

  16. Sekulic A, Migden MR, Oro AE et al (2012) Efficacy and safety of vismodegib in advanced basal-cell carcinoma. New Engl J Med 366(23):2171–2179

    Article  CAS  PubMed  Google Scholar 

  17. Tian F, Mysliwietz J, Ellwart J et al (2012) Effects of the Hedgehog pathway inhibitor GDC-0449 on lung cancer cell lines are mediated by side populations. Clin Exp Med 12(1):25–30. https://doi.org/10.1007/s10238-011-0135-8

    Article  CAS  PubMed  Google Scholar 

  18. Huang HN, Chan YL, Wu CJ, Chen JY (2015) Tilapia piscidin 4 (TP4) stimulates cell proliferation and wound closure in MRSA-infected wounds in mice. Mar Drugs 13(5):2813–2833. https://doi.org/10.3390/md13052813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan CY, Tsai TY, Su BC, Hui CF, Chen JY (2017) Study of the antimicrobial activity of tilapia piscidin 3 (TP3) and TP4 and their effects on immune functions in hybrid tilapia (Oreochromis spp.). PLoS ONE 12(1):e0169678. https://doi.org/10.1371/journal.pone.0169678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu CW, Su BC, Chen JY (2021) Tilapia piscidin 4 (TP4) reprograms M1 macrophages to M2 phenotypes in cell models of Gardnerella vaginalis-induced vaginosis. Front Immunol 12:773013. https://doi.org/10.3389/fimmu.2021.773013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ting CH, Chen YC, Wu CJ, Chen JY (2016) Targeting FOSB with a cationic antimicrobial peptide, TP4, for treatment of triple-negative breast cancer. Oncotarget 7(26):40329–40347. https://doi.org/10.18632/oncotarget.9612

    Article  PubMed  PubMed Central  Google Scholar 

  22. Su BC, Pan CY, Chen JY (2019) Antimicrobial peptide TP4 induces ROS-mediated necrosis by triggering mitochondrial dysfunction in wild-type and mutant p53 glioblastoma cells. Cancers (Basel) 11(2):171. https://doi.org/10.3390/cancers11020171

    Article  CAS  PubMed  Google Scholar 

  23. Su BC, Chen JY (2020) Pharmacological inhibition of p38 potentiates antimicrobial peptide TP4-induced cell death in glioblastoma cells. Mole Cell Biochem 464(1–2):1–9. https://doi.org/10.1007/s11010-019-03643-3

    Article  CAS  Google Scholar 

  24. Su BC, Hung GY, Tu YC et al (2021) Marine antimicrobial peptide TP4 exerts anticancer effects on human synovial sarcoma cells via calcium overload, reactive oxygen species production and mitochondrial hyperpolarization. Mar Drugs 19(2). https://doi.org/10.3390/md19020093

  25. Ting CH, Chen JY (2018) Nile tilapia derived TP4 shows broad cytotoxicity toward to non-small-cell lung cancer cells. Mar Drugs 16(12):506. https://doi.org/10.3390/md16120506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ting CH, Liu YC, Lyu PC, Chen JY (2018) Nile tilapia derived antimicrobial peptide TP4 exerts antineoplastic activity through microtubule disruption. Mar Drugs 16(12):462. https://doi.org/10.3390/md16120462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ting CH, Lee KY, Wu SM et al (2019) FOSB-PCDHB13 axis disrupts the microtubule network in non-small cell lung cancer. Cancers 11(1):107. https://doi.org/10.3390/cancers11010107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su BC, Liu YC, Ting CH, Lyu PC, Chen JY (2020) Antimicrobial peptide TP4 targets mitochondrial adenine nucleotide translocator 2. Mar Drugs 18(8):417. https://doi.org/10.3390/md18080417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Christofferson DE, Yuan J (2010) Cyclophilin a release as a biomarker of necrotic cell death. Cell Death Differ 17(12):1942–1943. https://doi.org/10.1038/cdd.2010.123

    Article  CAS  PubMed  Google Scholar 

  30. Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green™ and CMXRosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytom Part A 61a(2):162–169. https://doi.org/10.1002/cyto.a.20033

    Article  Google Scholar 

  31. Esteras N, Rohrer JD, Hardy J, Wray S, Abramov AY (2017) Mitochondrial hyperpolarization in iPSC-derived neurons from patients of FTDP-17 with 10+16 mutation leads to oxidative stress and neurodegeneration. Redox Biol 12:410–422. https://doi.org/10.1016/j.redox.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Su WX, Meng FK, Huang LF et al (2012) Sonic hedgehog maintains survival and growth of chronic myeloid leukemia progenitor cells through β-catenin signaling. Exp Hematol 40(5):418–427. https://doi.org/10.1016/j.exphem.2012.01.003

    Article  CAS  PubMed  Google Scholar 

  33. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400–414. https://doi.org/10.1038/nrc2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheong HT, Xu F, Choy CT et al (2018) Upregulation of Bcl2 in NSCLC with acquired resistance to EGFR-TKI. Oncol Lett 15(1):901–907. https://doi.org/10.3892/ol.2017.7377

    Article  CAS  PubMed  Google Scholar 

  35. O'Leary C, Gasper H, Sahin KB et al (2020) Epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC). Pharmaceuticals (Basel) 13(10). https://doi.org/10.3390/ph13100273

  36. Liang WH, Zhang YX, Kang SY et al (2014) Impact of EGFR mutation status on tumor response and progression free survival after first-line chemotherapy in patients with advanced non-small-cell lung cancer: a meta-analysis. J Thorac Dis 6(9):1239–1250. https://doi.org/10.3978/j.issn.2072-1439.2014.07.33

    Article  PubMed  PubMed Central  Google Scholar 

  37. Máthé C, Bohács A, Duffek L et al (2011) Cisplatin nephrotoxicity aggravated by cardiovascular disease and diabetes in lung cancer patients. Eur Respir J 37(4):888–894. https://doi.org/10.1183/09031936.00055110

    Article  CAS  PubMed  Google Scholar 

  38. Liu YC, Huber RM, Kiefl R, Tufman A, Kauffmann-Guerrero D (2020) Hedgehog pathway activation might mediate pemetrexed resistance in NSCLC cells. Anticancer Res 40(3):1451–1458. https://doi.org/10.21873/anticanres.14087

    Article  CAS  PubMed  Google Scholar 

  39. Han Y, Shi JQ, Xu ZW et al (2022) Identification of solamargine as a cisplatin sensitizer through phenotypical screening in cisplatin-resistant NSCLC organoids. Front Pharmacol 13:802168. https://doi.org/10.3389/fphar.2022.802168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahmad A, Maitah MY, Ginnebaugh KR et al (2013) Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. J Hematol Oncol 6:77. https://doi.org/10.1186/1756-8722-6-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bai XY, Zhang XC, Yang SQ et al (2016) Blockade of hedgehog signaling synergistically increases sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer cell lines. PLoS ONE 11(3):e0149370. https://doi.org/10.1371/journal.pone.0149370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen HL, Yang DH, Wang YC et al (2022) Activation of the Hedgehog pathway mediates resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer. J Cancer 13(3):987–997. https://doi.org/10.7150/jca.63410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Indran IR, Tufo G, Pervaiz S, Brenner C (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. BBA-Bioenergetics 1807(6):735–745. https://doi.org/10.1016/j.bbabio.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  44. Todaro M, Lombardo Y, Francipane MG et al (2008) Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ 15(4):762–772. https://doi.org/10.1038/sj.cdd.4402305

    Article  CAS  PubMed  Google Scholar 

  45. Gong YT, Fan ZY, Luo GP et al (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18:100. https://doi.org/10.1186/s12943-019-1029-8

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nakamura H, Takada K (2021) Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci 112(10):3945–3952. https://doi.org/10.1111/cas.15068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Song C, Liu Q, Qin J et al (2024) UCP2 promotes NSCLC proliferation and glycolysis via the mTOR/HIF-1alpha signaling. Cancer Med. https://doi.org/10.1002/cam4.6938

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen BS, Shen ZJ, Wu DG et al (2019) Glutathione peroxidase 1 promotes NSCLC resistance to cisplatin via ROS-induced activation of PI3K/AKT pathway. Biomed Res Int 2019:7640547. https://doi.org/10.1155/2019/7640547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu SL, Li B, Xu JY et al (2020) SOD1 promotes cell proliferation and metastasis in non-small cell lung cancer via an miR-409–3p/SOD1/SETDB1 epigenetic regulatory feedforward loop. Front Cell Dev Biol 8:213. https://doi.org/10.3389/fcell.2020.00213

    Article  PubMed  PubMed Central  Google Scholar 

  50. Snezhkina AV, Kudryavtseva AV, Kardymon OL et al (2019) ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev 2019:6175804. https://doi.org/10.1155/2019/6175804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu YP, Bebb G, Tan S et al (2004) Antitumor efficacy of oblimersen Bcl-2 antisense oligonucleotide alone and in combination with vinorelbine in xenograft models of human non-small cell lung cancer. Clin Cancer Res 10(22):7662–7670. https://doi.org/10.1158/1078-0432.Ccr-04-1036

    Article  CAS  PubMed  Google Scholar 

  52. Choi J, Choi K, Benveniste EN et al (2005) Bcl-2 promotes invasion and lung metastasis by inducing matrix metalloproteinase-2. Cancer Res 65(13):5554–5560. https://doi.org/10.1158/0008-5472.Can-04-4570

    Article  CAS  PubMed  Google Scholar 

  53. Vincent AJ, Ren SP, Harris LG et al (2012) Cytoplasmic translocation of p21 mediates NUPR1-induced chemoresistance NUPR1 and p21 in chemoresistance. FEBS Lett 586(19):3429–3434. https://doi.org/10.1016/j.febslet.2012.07.063

    Article  CAS  PubMed  Google Scholar 

  54. Murphy A, Costa M (2020) Nuclear protein 1 imparts oncogenic potential and chemotherapeutic resistance in cancer. Cancer Lett 494:132–141. https://doi.org/10.1016/j.canlet.2020.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu Y, Bian D, Zhang X, Zhang H, Zhu Z (2021) Inhibition of Bcl-2 and Bcl-xL overcomes the resistance to the third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer. Mol Med Rep 23(1). https://doi.org/10.3892/mmr.2020.11686

  56. Kane DJ, Ord T, Anton R, Bredesen DE (1995) Expression of Bcl-2 inhibits necrotic neural cell-death. J Neurosci Res 40(2):269–275. https://doi.org/10.1002/jnr.490400216

    Article  CAS  PubMed  Google Scholar 

  57. Maheshwari M, Yadav N, Hasanain M et al (2022) Inhibition of p21 activates Akt kinase to trigger ROS-induced autophagy and impacts on tumor growth rate. Cell Death Dis 13(12):1045. https://doi.org/10.1038/s41419-022-05486-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Romanov VS, Rudolph KL (2016) p21 shapes cancer evolution. Nat Cell Biol 18(7):722–724. https://doi.org/10.1038/ncb3382

    Article  CAS  PubMed  Google Scholar 

  59. Asada M, Yamada T, Ichijo H et al (1999) Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J 18(5):1223–1234. https://doi.org/10.1093/emboj/18.5.1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou BHP, Liao Y, Xia WY et al (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3(3):245–252. https://doi.org/10.1038/35060032

    Article  CAS  PubMed  Google Scholar 

  61. Martin TA, Li AX, Sanders AJ et al (2021) NUPR1 and its potential role in cancer and pathological conditions (Review). Int J Oncol 58(5). https://doi.org/10.3892/ijo.2021.5201

Download references

Acknowledgements

We thank Marcus Calkins for language editing.

Funding

This research was funded by the Ministry of Science and Technology (MOST; Taiwan), MOST 109-2320-B-038-010-MY2; 110-2320-B-038 -023. This research was also funded by Taipei Municipal Wan Fang Hospital, 110TMU-WFH-20.

Author information

Authors and Affiliations

Authors

Contributions

W.C.Y, Y.C.T, T.C.C., P.L.H, and C.W.L. conducted experiments. W.C.Y., Y.C.T., S.Y.W., B.S.P., and H.H.Y. evaluated data. B.C.S. conceived, designed the research, wrote, and revised the manuscript. B.C.S. supervised the experiments. All authors read and approved the manuscript.

Corresponding author

Correspondence to Bor-Chyuan Su.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 972 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, WC., Tu, YC., Chien, TC. et al. Vismodegib Potentiates Marine Antimicrobial Peptide Tilapia Piscidin 4-Induced Cytotoxicity in Human Non-Small Cell Lung Cancer Cells. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10282-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10282-8

Keywords

Navigation