Skip to main content

Advertisement

Log in

In Vivo Acute Toxicity and Therapeutic Potential of a Synthetic Peptide, DP1 in a Staphylococcus aureus Infected Murine Wound Excision Model

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Bacterial infections at the surgical sites are one of the most prevalent skin infections that impair the healing mechanism. They account for about 20% of all types of infections and lead to approximately 75% of surgical-site infection-associated mortality. Several antibiotics, such as cephalosporins, fluoroquinolones, quinolones, penicillin, sulfonamides, etc., that are used to treat such wound infections not only counter infections but also disrupt the normal flora. Moreover, antibiotics, when used for a prolonged duration, may impair the formation of new blood vessels, delay collagen production, or inhibit the migration of certain cells involved in wound repair, leading to an impaired healing process. Therefore, there is a dire need for alternate therapeutic approaches against such infections. Antimicrobial peptides have gained considerable attention as a promising strategy to counter these pathogens and prevent the spread of infection. Recently, we have reported a designed peptide, DP1, and its broad-spectrum in vitro antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, in vivo acute toxicity of DP1 was evaluated and even at a high dose (20 mg/kg body weight) of DP1, a 100% survival of mice was observed. Subsequently, a Staphylococcus aureus-infected murine wound excision model was established to assess the wound healing efficacy of DP1. The study revealed significant wound healing vis-a-vis attenuated S. aureus bioburden at the wound site and also controlled the oxidative stress depicting anti-oxidant activity as well. Healing of the infected wounds was also verified by histopathological examination. Based on the results of this study, it can be concluded that DP1 improves wound resolution despite infections and promotes the healing mechanism. Hence, DP1 holds compelling potential as a novel antimicrobial drug that requires further explorations in clinical platforms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Smith R, Russo J, Fiegel J et al (2020) Antibiotic delivery strategies to treat skin infections when innate antimicrobial defense fails. Antibiotics 9:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Punjataewakupt A, Napavichayanun S, Aramwit P (2019) The downside of antimicrobial agents for wound healing. Eur J Clin Microbiol Infect Dis 38:39–54

    Article  PubMed  Google Scholar 

  3. Bessa LJ, Fazii P, Di Giulio M et al (2015) Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection. Int Wound J 12:47–52

    Article  PubMed  Google Scholar 

  4. Joshi S, Sharma P, Siddiqui R et al (2020) A review on peptide functionalized graphene derivatives as nanotools for biosensing. Microchim Acta 187:1–15

    Article  Google Scholar 

  5. Stanbro J, Park JM, Bond M et al (2020) Topical delivery of lactobacillus culture supernatant increases survival and wound resolution in traumatic Acinetobacter baumannii infections. Probiotics and antimicrobial proteins 12:809–818

    Article  CAS  PubMed  Google Scholar 

  6. Haque M, Sartelli M, McKimm J et al (2018) Health care-associated infections - an overview. Infect Drug Resist 11:2321–2333

    Article  PubMed  PubMed Central  Google Scholar 

  7. Turner NA, Sharma-Kuinkel BK, Maskarinec SA et al (2019) Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 17:203–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tong SYC, Davis JS, Eichenberger E et al (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoffmann JP, Friedman JK, Wang Y et al (2020) In situ treatment with novel microbiocide inhibits methicillin resistant Staphylococcus aureus in a murine wound infection model. Front Microbiol 10

  10. Almeida GCM, dos Santos MM, Lima NGM et al (2014) Prevalence and factors associated with wound colonization by Staphylococcus spp. and Staphylococcus aureus in hospitalized patients in inland northeastern Brazil: a cross-sectional study. BMC Infect Dis 14:328

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim DJ, Lee YW, Park MK et al (2014) Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection. Amino Acids 46:2333–2343

    Article  CAS  PubMed  Google Scholar 

  12. Prinzi A, Rohde R (2023) The role of bacterial biofilms in antimicrobial resistance. ASM Press

  13. Archer NK, Mazaitis MJ, Costerton JW et al (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2:445–459

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hughes D, Karlén A (2014) Discovery and preclinical development of new antibiotics. Ups J Med Sci 119:162–169

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sharma S, Barman P, Joshi S et al (2022) Multidrug resistance crisis during COVID-19 pandemic: role of anti-microbial peptides as next-generation therapeutics. Colloids Surf B 211:112303

    Article  CAS  Google Scholar 

  16. Joshi S, Sharma S, Verma G et al (2022) Peptide functionalized nanomaterials as microbial sensors. Photophysics and Nanophysics in Therapeutics, Elsevier, 2022, pp 327–48

  17. Barman P, Joshi S, Sharma S et al (2023) Strategic approaches to improvise peptide drugs as next generation therapeutics. Int J Pept Res Ther 29:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spencer JJ, Pitts RE, Pearson RA et al (2018) The effects of antimicrobial peptides WAM-1 and LL-37 on multidrug-resistant Acinetobacter baumannii. Pathog Dis 76:fty007

    Article  Google Scholar 

  19. Pfalzgraff A, Brandenburg K, Weindl G (2018) Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol 9:281

    Article  PubMed  PubMed Central  Google Scholar 

  20. Joshi S, Siddiqui R, Sharma P et al (2020) Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity. Sci Rep 10:9441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang M, Zhang C, Hansen SA et al (2019) Antimicrobial efficacy and toxicity of novel CAMPs against P. aeruginosa infection in a murine skin wound infection model. BMC Microbiol 19:293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rima M, Rima M, Fajloun Z et al (2021) Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics (Basel) 10

  23. Chen CH, Lu TK (2020) Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel) 9

  24. Moretta A, Scieuzo C, Petrone AM et al (2021) Antimicrobial peptides: a new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol 453

  25. Sharma P, Sharma S, Joshi S et al (2022) Design, characterization and structure-function analysis of novel antimicrobial peptides based on the N-terminal CATH-2 fragment. Sci Rep 12:12058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mayank Maan HG, Joshi S, Sharma S, Rishi P, Saini A (2023) Synthetic peptide to combat Staphylococcus aureus-mediated infection: an in vitro and in vivo antimicrobial evaluation study

  27. Diamond G, Beckloff N, Weinberg A et al (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martell EM, González-Garcia M, Ständker L et al (2021) Host defense peptides as immunomodulators: the other side of the coin. Peptides 146:170644

    Article  CAS  PubMed  Google Scholar 

  29. Alford MA, Baquir B, Santana FL et al (2020) Cathelicidin host defense peptides and inflammatory signaling: striking a balance. Front Microbiol 11:1902

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang G, Chen Z, Tian P et al (2022) Wound healing mechanism of antimicrobial peptide cathelicidin-DM. Front Bioeng Biotechnol 10

  31. Li S-A, Lee W-H, Zhang Y (2012) Efficacy of OH-CATH30 and its analogs against drug-resistant bacteria in vitro and in mouse models. Antimicrob Agents Chemother 56:3309–3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Locke T, Parsons H, Briffa N et al (2022) A bundle of infection control measures reduces postoperative sternal wound infection due to Staphylococcus aureus but not Gram-negative bacteria: a retrospective analysis of 6903 patient episodes. J Hosp Infect 126:21–28

    Article  CAS  PubMed  Google Scholar 

  33. Roy S, Santra S, Das A et al (2020) Staphylococcus aureus biofilm infection compromises wound healing by causing deficiencies in granulation tissue collagen. Ann Surg 271:1174–1185

    Article  PubMed  Google Scholar 

  34. NCCLS (2003) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 6th edn. Approved standard M7-A6, National Committee for Clinical Laboratory Standards, Wayne

  35. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16

    Article  CAS  PubMed  Google Scholar 

  36. Schlede E, Genschow E, Spielmann H et al (2005) Oral acute toxic class method: a successful alternative to the oral LD50 test. Regul Toxicol Pharmacol 42:15–23

    Article  CAS  PubMed  Google Scholar 

  37. Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K (2019) Anti-inflammatory effect of Garcinia mangostana Linn. pericarp extract in methicillin-resistant Staphylococcus aureus-induced superficial skin infection in mice. Biomed Pharmacother 111:705–713

    Article  CAS  PubMed  Google Scholar 

  38. Shang L, Li J, Song C et al (2020) Hybrid antimicrobial peptide targeting Staphylococcus aureus and displaying anti-infective activity in a murine model. Front Microbiol 11:1767

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stoeber B, Ranamukha S, St. Clair R (2018) Intradermal delivery – new technology brings simplicity & scalability to intradermal drug delivery. Drug Deliv Development

  40. Wolf RF, White GL (2012) Chapter 13 - Clinical techniques used for Nonhuman primates. In: Abee CR, Mansfield K, Tardif S et al (eds) Nonhuman Primates in Biomedical Research (Second Edition). Academic Press, Boston, pp 323–337

    Chapter  Google Scholar 

  41. Moreira CF, Cassini-Vieira P, Canesso MCC et al (2021) Lactobacillus rhamnosus CGMCC 1.3724 (LPR) improves skin wound healing and reduces scar formation in mice. Probiotics Antimicrob Proteins 13:709–719

    Article  CAS  PubMed  Google Scholar 

  42. Huang H-N, Rajanbabu V, Pan C-Y et al (2013) Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials 34:10319–10327

    Article  CAS  PubMed  Google Scholar 

  43. Driver AS, Kodavanti PRS, Mundy WR (2000) Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22:175–181

    Article  CAS  PubMed  Google Scholar 

  44. Luck H (1974) Methods in enzymatic analysis II (ed.) Bergmeyer.(publ.). Academic Press, New York

  45. Massey V, Williams CH (1965) On the reaction mechanism of yeast glutathione reductase. J Biol Chem 240:4470–4480

    Article  CAS  PubMed  Google Scholar 

  46. Al-Saedi ZHF, Salih ZT, Ahmed KK et al (2022) Formulation and characterization of oleogel as a topical carrier of azithromycin. AAPS PharmSciTech 24:17

    Article  PubMed  Google Scholar 

  47. Hema-Ouangraoua S, Tranchot-Diallo J, Zongo I et al (2021) Impact of mass administration of azithromycin as a preventive treatment on the prevalence and resistance of nasopharyngeal carriage of Staphylococcus aureus. PLoS ONE 16:e0257190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoepelman IM, Schneider MME (1995) Azithromycin: the first of the tissue-selective azalides. Int J Antimicrob Agents 5:145–167

    Article  CAS  PubMed  Google Scholar 

  49. Neu HC (1991) Clinical microbiology of azithromycin. Am J Med 91:S12–S18

    Article  Google Scholar 

  50. Castle SS (2007) Ampicillin. In: Enna SJ, Bylund DB (eds) xPharm: the comprehensive pharmacology reference, Elsevier, New York, pp 1–6

  51. Peechakara BV, Gupta M (2022) Ampicillin/sulbactam. In: StatPearls [Internet]. StatPearls publishing

  52. Teethaisong Y, Autarkool N, Sirichaiwetchakoon K et al (2014) Synergistic activity and mechanism of action of Stephania suberosa Forman extract and ampicillin combination against ampicillin-resistant Staphylococcus aureus. J Biomed Sci 21:90

    Article  PubMed  PubMed Central  Google Scholar 

  53. Watson A, Sauve K, Cassino C et al (2020) Exebacase demonstrates in vitro synergy with a broad range of antibiotics against both methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.01885-19

  54. Golan Y (2019) Current treatment options for acute skin and skin-structure infections. Clin Infect Dis 68:S206–S212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dong C-L, Li L-X, Cui Z-H et al (2017) Synergistic effect of pleuromutilins with other antimicrobial agents against Staphylococcus aureus in vitro and in an experimental Galleria mellonella model. Front Pharmacol 8:553

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yameen A, Nasim H, Akhtar N et al (2010) Antibiotic susceptibility profile of methicillin-resistant staphylococci isolated from nasal samples of hospitalized patients. Afr J Microbiol Res 4:204–209

    CAS  Google Scholar 

  57. Moses VK, Kandi V, Rao SKD (2020) Minimum inhibitory concentrations of vancomycin and daptomycin against methicillin-resistant Staphylococcus aureus isolated from various clinical specimens: a study from South India. Cureus 12:e6749

    PubMed  PubMed Central  Google Scholar 

  58. Jo A, Ahn J (2016) Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin. BMC Microbiol 16:1–10

    Article  Google Scholar 

  59. Ochoa R (2002) 14 - Pathology issues in the design of toxicology studies. In: Haschek WM, Rousseaux CG, Wallig MA (eds) Handbook of Toxicologic Pathology (Second Edition), Academic Press, San Diego, pp 307–26

  60. Brody T (2018) Chapter 6 - Animal studies. In: Brody T (ed) FDA’s drug review process and the package label, Academic Press, pp 187–254

  61. Agathokleous E, Moore MN, Calabrese EJ (2021) Estimating the no-observed-adverse-effect-level (NOAEL) of hormetic dose-response relationships in meta-data evaluations. MethodsX 8:101568

    Article  PubMed  PubMed Central  Google Scholar 

  62. Strodtbeck F (2001) Physiology of wound healing. Newborn Infant Nurs Rev 1:43–52

    Article  Google Scholar 

  63. Beldon P (2010) Basic science of wound healing. Surg Infect (Larchmt) 28:409–412

    Google Scholar 

  64. Negut I, Grumezescu V, Grumezescu AM (2018) Treatment strategies for infected wounds. Molecules (Basel, Switzerland) 23:2392

    Article  PubMed  Google Scholar 

  65. Cardona AF, Wilson SE (2015) Skin and soft-tissue infections: a critical review and the role of telavancin in their treatment. Clin Infect Dis 61:S69–S78

    Article  CAS  PubMed  Google Scholar 

  66. Jung C-J, Liao Y-D, Hsu C-C et al (2021) Identification of potential therapeutic antimicrobial peptides against Acinetobacter baumannii in a mouse model of pneumonia. Sci Rep 11:7318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dijksteel GS (2021) Potential novel antimicrobial therapies for burn wounds: peptides and cold plasma. NARCIS

  68. Gorr S-U, Flory CM, Schumacher RJ (2019) In vivo activity and low toxicity of the second-generation antimicrobial peptide DGL13K. PLoS ONE 14:e0216669-e

    Article  Google Scholar 

  69. Ni Z, Wang B, Ma X et al (2016) Toxicology assessment of a dual-function peptide 5rolGLP-HV in mice. Appl Biochem Biotechnol 180:1276–1285

    Article  CAS  PubMed  Google Scholar 

  70. Cebrián R, Rodríguez-Cabezas ME, Martín-Escolano R et al (2019) Preclinical studies of toxicity and safety of the AS-48 bacteriocin. J Adv Res 20:129–139

    Article  PubMed  PubMed Central  Google Scholar 

  71. El Shazely B, Yu G, Johnston PR et al (2020) Resistance evolution against antimicrobial peptides in Staphylococcus aureus alters pharmacodynamics beyond the MIC. Front Microbiol 11:103

    Article  PubMed  PubMed Central  Google Scholar 

  72. Thomas RK, Melton R, Asbell PA (2019) Antibiotic resistance among ocular pathogens: current trends from the ARMOR surveillance study (2009–2016). Clin Optom (Auckl) 11:15–26

    Article  PubMed  Google Scholar 

  73. Miklasińska-Majdanik M (2021) Mechanisms of resistance to macrolide antibiotics among Staphylococcus aureus. Antibiotics (Basel) 10

  74. Bojang A, Baines SL, Donovan L et al (2019) Genomic investigation of Staphylococcus aureus recovered from Gambian women and newborns following an oral dose of intra-partum azithromycin. J Antimicrob Chemother 74:3170–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nigatu TA, Afework M, Urga K et al (2017) Toxicological investigation of acute and chronic treatment with Gnidia stenophylla Gilg root extract on some blood parameters and histopathology of spleen, liver and kidney in mice. BMC Res Notes 10:625

    Article  PubMed  PubMed Central  Google Scholar 

  76. Adedapo AA, Abatan MO, Olorunsogo OO (2007) Effects of some plants of the spurge family on haematological and biochemical parameters in rats. Vet Arhiv 77:29–38

    Google Scholar 

  77. Adebayo JO, Yakubu MT, Egwim EC et al (2003) Effect of ethanolic extract of Khaya senegalensis on some biochemical parameters of rat kidney. J Ethnopharmacol 88:69–72

    Article  PubMed  Google Scholar 

  78. Vaidya VS, Ferguson MA, Bonventre JV (2008) Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol 48:463–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schneider VAF, Coorens M, Tjeerdsma-van Bokhoven JL et al (2017) Imaging the antistaphylococcal activity of CATH-2: mechanism of attack and regulation of inflammatory response. mSphere 2:e00370-e417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mangoni ML, McDermott AM, Zasloff M (2016) Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol 25:167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rishi P, Vashist T, Sharma A et al (2018) Efficacy of designer K11 antimicrobial peptide (a hybrid of melittin, cecropin A1 and magainin 2) against Acinetobacter baumannii-infected wounds. Pathog Dis 76:fty072

    Article  CAS  Google Scholar 

  82. Polaka S, Katare P, Pawar B et al (2022) Emerging ROS-modulating technologies for augmentation of the wound healing process. ACS Omega 7:30657–30672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dunnill C, Patton T, Brennan J et al (2017) Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 14:89–96

    Article  PubMed  Google Scholar 

  84. Andrés CMC, Pérez de la Lastra JM, Juan CA et al (2022) Chemistry of hydrogen peroxide formation and elimination in mammalian cells, and its role in various pathologies. Stresses 2:256–274

    Article  Google Scholar 

  85. Ransy C, Vaz C, Lombès A et al (2020) Use of H(2)O(2) to cause oxidative stress, the catalase issue. Int J Mol Sci 21

  86. Nandi A, Yan LJ, Jana CK et al (2019) Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev 2019:9613090

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mishra S, Imlay J (2012) Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch Biochem Biophys 525:145–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Agarwal P, Singh A, Gaurav K et al (2009) Evaluation of wound healing activity of extracts of plantain banana (Musa sapientum var. paradisiaca) in rats

  89. Rasik AM, Shukla A (2000) Antioxidant status in delayed healing type of wounds. Int J Exp Pathol 81:257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author acknowledges the central instrumental facilities provided by SAIF/CIL, Panjab University, Chandigarh, India.

Funding

The study reported here was funded by DRDO, India and DST – FIST sanctioned to Department of Biophysics, Panjab University, India.

Author information

Authors and Affiliations

Authors

Contributions

P.B. and C.S. performed the experiments, P.B. compiled the main manuscript, S.J., S.S. and M.M. aided in interpretation of the results. P.R. and N.S. provided valuable inputs during manuscript preparation. A.S. designed the study, supervised all experiments during manuscript preparation, contributed to discussion and reviewed the manuscript.

Corresponding author

Correspondence to Avneet Saini.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Novel antimicrobial peptide DP1 is a promising alternative treatment to conventional antibiotics.

• DP1 is significantly less toxic as evident by its larger therapeutic window.

• Higher efficacy in healing Staphylococcus aureus infection wounds.

• DP1 reduces the Staphylococcus aureus colonization and bioburden contamination in wound infections.

• Regulates antioxidant levels and restores wound tissue.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2271 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, P., Sharma, C., Joshi, S. et al. In Vivo Acute Toxicity and Therapeutic Potential of a Synthetic Peptide, DP1 in a Staphylococcus aureus Infected Murine Wound Excision Model. Probiotics & Antimicro. Prot. (2023). https://doi.org/10.1007/s12602-023-10176-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10176-1

Keywords

Navigation