Skip to main content

Advertisement

Log in

Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

An Erratum to this article was published on 06 August 2014

Abstract

Infected wounds cause delay in wound closure and impose significantly negative effects on patient care and recovery. Antimicrobial peptides (AMPs) with antimicrobial and wound closure activities, along with little opportunity for the development of resistance, represent one of the promising agents for new therapeutic approaches in the infected wound treatment. However, therapeutic applications of these AMPs are limited by their toxicity and low stability in vivo. Previously, we reported that the 19-amino-acid designer peptide SHAP1 possessed salt-resistant antimicrobial activities. Here, we analyzed the wound closure activities of SHAP1 both in vitro and in vivo. SHAP1 did not affect the viability of human erythrocytes and keratinocytes up to 200 μM, and was not digested by exposure to proteases in the wound fluid, such as human neutrophil elastase and Staphylococcus aureus V8 proteinase for up to 12 h. SHAP1 elicited stronger wound closure activity than human cathelicidin AMP LL-37 in vitro by inducing HaCaT cell migration, which was shown to progress via transactivation of the epidermal growth factor receptor. In vivo analysis revealed that SHAP1 treatment accelerated closure and healing of full-thickness excisional wounds in mice. Moreover, SHAP1 effectively countered S. aureus infection and enhanced wound healing in S. aureus-infected murine wounds. Overall, these results suggest that SHAP1 might be developed as a novel topical agent for the infected wound treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andl CD, Mizushima T, Oyama K, Bowser M, Nakagawa H, Rustgi AK (2004) EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. Am J Physiol Gastrointest Liver Physiol 287:G1227–G1237

    Article  PubMed  CAS  Google Scholar 

  • Baroni A, Donnarumma G, Paoletti I, Longanesi-Cattani I, Bifulco K, Tufano MA, Carriero MV (2009) Antimicrobial human beta-defensin-2 stimulates migration, proliferation and tube formation of human umbilical vein endothelial cells. Peptides 30:267–272

    Article  PubMed  CAS  Google Scholar 

  • Bowler PG (2002) Wound pathophysiology, infection and therapeutic options. Ann Med 34:419–427

    Article  PubMed  CAS  Google Scholar 

  • Carretero M, Del Rio M, Garcia M, Escamez MJ, Mirones I, Rivas L, Balague C, Jorcano JL, Larcher F (2004) A cutaneous gene therapy approach to treat infection through keratinocyte-targeted overexpression of antimicrobial peptides. FASEB J 18:1931–1933

    PubMed  CAS  Google Scholar 

  • Carretero M, Escamez MJ, Garcia M, Duarte B, Holguin A, Retamosa L, Jorcano JL, Rio MD, Larcher F (2008) In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol 128:223–236

    Article  PubMed  CAS  Google Scholar 

  • Chiller K, Selkin BA, Murakawa GJ (2001) Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc 6:170–174

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Choi DK, Sohn KC, Kwak SS, Suk J, Lim JS, Shin I, Kim SW, Lee JH, Joe CO (2012) Absence of a human DnaJ protein hTid-1S correlates with aberrant actin cytoskeleton organization in lesional psoriatic skin. J Biol Chem 287:25954–25963

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Zotti M, Biondi B, Park Y, Hahm KS, Crisma M, Toniolo C, Formaggio F (2012) Antimicrobial lipopeptaibol trichogin GA IV: role of the three Aib residues on conformation and bioactivity. Amino Acids 43:1761–1777

    Article  PubMed  CAS  Google Scholar 

  • Gopinath D, Kumar MS, Selvaraj D, Jayakumar R (2005) Pexiganan-incorporated collagen matrices for infected wound-healing processes in rat. J Biomed Mater Res A 73:320–331

    Article  PubMed  CAS  Google Scholar 

  • Gronberg A, Zettergren L, Agren MS (2011) Stability of the cathelicidin peptide LL-37 in a non-healing wound environment. Acta Derm Venereol 91:511–515

    PubMed  Google Scholar 

  • Guay DR (2003) Treatment of bacterial skin and skin structure infections. Expert Opin Pharmacother 4:1259–1275

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Hawrani A, Howe RA, Walsh TR, Dempsey CE (2008) Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Biol Chem 283:18636–18645

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen F, Mittler D, Hirsch T, Gerhards A, Lehnhardt M, Voss B, Steinau HU, Steinstraesser L (2005) Transient cutaneous adenoviral gene therapy with human host defense peptide hCAP-18/LL-37 is effective for the treatment of burn wound infections. Gene Ther 12:1494–1502

    Article  PubMed  CAS  Google Scholar 

  • Jang SA, Kim H, Lee JY, Shin JR, da Kim J, Cho JH, Kim SC (2012) Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Peptides 34:283–289

    Article  PubMed  CAS  Google Scholar 

  • Kim SC, Park IY, Kim JM (2008) Salt-resistant antimicrobial peptides and antimicrobial composition comprising thereof. Korea Patent 10-0836596

  • Kim H, Jang JH, Kim SC, Cho JH (2013) De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. J Antimicrob Chemother. doi:10.1093/jac/dkt322

    PubMed Central  Google Scholar 

  • Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee PH, Rudisill JA, Lin KH, Zhang L, Harris SM, Falla TJ, Gallo RL (2004) HB-107, a nonbacteriostatic fragment of the antimicrobial peptide cecropin B, accelerates murine wound repair. Wound Repair Regen 12:351–358

    Article  PubMed  Google Scholar 

  • Lipsky BA, Hoey C (2009) Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis 49:1541–1549

    Article  PubMed  Google Scholar 

  • Ma QQ, Dong N, Shan AS, Lv YF, Li YZ, Chen ZH, Cheng BJ, Li ZY (2012) Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units. Amino Acids 43:2527–2536

    Article  PubMed  CAS  Google Scholar 

  • Malmsten M, Kasetty G, Pasupuleti M, Alenfall J, Schmidtchen A (2011) Highly selective end-tagged antimicrobial peptides derived from PRELP. PLoS One 6:e16400

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472

    Article  PubMed  CAS  Google Scholar 

  • McHugh SM, Collins CJ, Corrigan MA, Hill AD, Humphreys H (2011) The role of topical antibiotics used as prophylaxis in surgical site infection prevention. J Antimicrob Chemother 66:693–701

    Article  PubMed  CAS  Google Scholar 

  • Mookherjee N, Hancock RE (2007) Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci 64:922–933

    Article  PubMed  CAS  Google Scholar 

  • Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, Roche FM, Mu R, Doho GH, Pistolic J, Powers JP, Bryan J, Brinkman FS, Hancock RE (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 176:2455–2464

    Article  PubMed  CAS  Google Scholar 

  • Myhrman E, Hakansson J, Lindgren K, Bjorn C, Sjostrand V, Mahlapuu M (2012) The novel antimicrobial peptide PXL150 in the local treatment of skin and soft tissue infections. Appl Microbiol Biotechnol 97:3085–3096

    Article  PubMed  PubMed Central  Google Scholar 

  • Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Investig Dermatol 127:594–604

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1(2005):0010

    PubMed  Google Scholar 

  • Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Park IY, Cho JH, Kim KS, Kim YB, Kim MS, Kim SC (2004) Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem 279:13896–13901

    Article  PubMed  CAS  Google Scholar 

  • Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M (2009) End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS One 4:e5285

    Article  PubMed  PubMed Central  Google Scholar 

  • Philp D, Badamchian M, Scheremeta B, Nguyen M, Goldstein AL, Kleinman HK (2003) Thymosin beta 4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice. Wound Repair Regen 11:19–24

    Article  PubMed  Google Scholar 

  • Puddicombe SM, Polosa R, Richter A, Krishna MT, Howarth PH, Holgate ST, Davies DE (2000) Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J 14:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Radek KA, Taylor KR, Gallo RL (2009) FGF-10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation. Wound Repair Regen 17:118–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38((Database issue)):D227–D233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shaykhiev R, Beisswenger C, Kandler K, Senske J, Puchner A, Damm T, Behr J, Bals R (2005) Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol Lung Cell Mol Physiol 289:L842–L848

    Article  PubMed  CAS  Google Scholar 

  • Shin YP, Park HJ, Shin SH, Lee YS, Park S, Jo S, Lee YH, Lee IH (2010) Antimicrobial activity of a halocidin-derived peptide resistant to attacks by proteases. Antimicrob Agents Chemother 54:2855–2866

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shin JR, Lim KJ, da Kim J, Cho JH, Kim SC (2013) Display of multimeric antimicrobial peptides on the Escherichia coli cell surface and its application as whole-cell antibiotics. PLoS One 8:e58997

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Steinstraesser L, Koehler T, Jacobsen F, Daigeler A, Goertz O, Langer S, Kesting M, Steinau H, Eriksson E, Hirsch T (2008) Host defense peptides in wound healing. Mol Med 14:528–537

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Steinstraesser L, Kraneburg UM, Hirsch T, Kesting M, Steinau HU, Jacobsen F, Al-Benna S (2009) Host defense peptides as effector molecules of the innate immune response: a sledgehammer for drug resistance? Int J Mol Sci 10:3951–3970

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stromstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M (2009) Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother 53:593–602

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Nagai H, Yang L, Higashiyama S, Yoshimura A, Sugai M, Hashimoto K (2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 175:4662–4668

    Article  PubMed  CAS  Google Scholar 

  • Torpy JM, Burke A, Glass RM (2005) JAMA patient page. Wound infections. JAMA 294:2122

    Article  PubMed  CAS  Google Scholar 

  • Winter J, Wenghoefer M (2012) Human defensins: potential tools for clinical applications. Polymers 4:691–709

    Article  Google Scholar 

  • Yin J, Yu FS (2010) LL-37 via EGFR transactivation to promote high glucose-attenuated epithelial wound healing in organ-cultured corneas. Invest Ophthalmol Vis Sci 51:1891–1897

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intelligent Synthetic Biology Center of Global Frontier Project funded by the Ministry of Science, ICT & Future Planning (2011-0031955) and the Medicine & Bio Project for “New Drug Development through Fostering of Med-Bio Hub” of the Chungcheong Leading Industry Office (CCLIO) and Ministry of Knowledge Economy (MKE) (C2110907).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju Hyun Cho or Sun Chang Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung Kim, D., Lee, Y.W., Park, M.K. et al. Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection. Amino Acids 46, 2333–2343 (2014). https://doi.org/10.1007/s00726-014-1780-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1780-5

Keywords

Navigation