Skip to main content
Log in

Probiotic Potentials of Lactic Acid Bacteria and Yeasts from Raw Goat Milk in Nigeria

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Probiotic microorganisms are incorporated in foods due to their numerous health benefits. We investigated lactic acid bacteria (LAB) and yeasts isolated from goat milk in Nigeria for novel probiotic strains. In this study, a total of 27 LAB and 23 yeast strains were assessed for their probiotic potentials. Only six LAB strains (Weissella cibaria GM 93m3, Weissella confusa GM 92m1, Pediococcus acidilactici GM 18a, Pediococcus pentosaceus GM 23d, Lactiplantibacillus pentosus GM 102s4, Limosilactobacillus fermentum GM 30m1) and four yeast strains (Candida tropicalis 12a, C. tropicalis 33d, Diutina rugosa 53b, and D. rugosa 77a) identified using partial 16S and 26S rDNA sequencing, respectively, showed survival at pH 2.5, 0.3% bile salt, and simulated gastrointestinal conditions and possessed auto-aggregative and hydrophobic properties, thus satisfying key in vitro criteria as probiotics. All LAB strains showed coaggregation properties and antimicrobial activities against pathogens. Pediococcus pentosaceus GM 23d recorded the strongest coaggregation percentage (34–94%) against 14 pathogens, while W. cibaria GM 93m3 showed the least (6–57%) against eight of the 14 pathogens. The whole cell and extracellular extracts of LAB and yeast strains, with the exception of D. rugosa 77a, had either 2,2-diphenyl-1-picryl-hydrazyl and/or hydroxyl radical scavenging activity. In conclusion, all six LAB and four yeast strains are important probiotic candidates that can be further investigated for use as functional starter cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available on request from M.O.A.

References

  1. Kanmani P, Satish Kumar R, Yuvaraj N et al (2013) Probiotics and its functionally valuable products—a review. Crit Rev Food Sci Nutr 53:641–658. https://doi.org/10.1080/10408398.2011.553752

    Article  CAS  PubMed  Google Scholar 

  2. FAO/WHO (2006) Probiotics in food health and nutritional properties and guidelines for evaluation FAO FOOD AND NUTRITION PAPER

  3. Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, ... Kim N (2012) World gastroenterology organisation global guidelines: probiotics and prebiotics. J Clin Gastro 46(6):468–481. https://doi.org/10.1097/MCG.0b013e3182549092

  4. Soccol CR, Porto L, Vandenberghe DS et al (2013) The potential of probiotics : a review. 48:413–434

  5. Al-Saeed G (2017) Facts about probiotics. J Pediatr Neonatal Care 6:5–7. https://doi.org/10.15406/jpnc.2017.06.00236

  6. Oikonomou G, Addis MF, Chassard C et al (2020) Milk microbiota: what are we exactly talking about? Front Microbiol 11:1–15. https://doi.org/10.3389/fmicb.2020.00060

    Article  Google Scholar 

  7. Akinyemi MO, Ayeni KI, Ogunremi OR et al (2021) A review of microbes and chemical contaminants in dairy products in sub-Saharan Africa. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.12712

    Article  PubMed  Google Scholar 

  8. Wochner KF, Becker-Algeri TA, Colla E et al (2018) The action of probiotic microorganisms on chemical contaminants in milk. Crit Rev Microbiol 44:112–123. https://doi.org/10.1080/1040841X.2017.1329275

    Article  CAS  PubMed  Google Scholar 

  9. Sakandar HA, Zhang H (2021) Trends in probiotic(s)-fermented milks and their in vivo functionality: a review. Trends Food Sci Technol 110:55–65. https://doi.org/10.1016/j.tifs.2021.01.054

    Article  CAS  Google Scholar 

  10. Banwo K, Sanni A, Tan H (2013) Functional properties of Pediococcus species isolated from traditional fermented cereal gruel and milk in Nigeria. Food Biotechnol 27:14–38. https://doi.org/10.1080/08905436.2012.755626

    Article  Google Scholar 

  11. Mbuk EU, Kwaga JKP, Bale JOO, Umoh JU (2016) Molecular identification of yeasts associated with raw cow milk from peri-urban farms in Kaduna State, Nigeria. J Yeast Fungal Res 7:39–46. https://doi.org/10.5897/JYFR2016.0172

    Article  CAS  Google Scholar 

  12. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36:895–904. https://doi.org/10.1016/S0963-9969(03)00098-X

    Article  CAS  Google Scholar 

  13. Ajao O, Banwo K, Ogunremi O, Sanni A (2018) Antimicrobial properties and probiotic potentials of lactic acid bacteria isolated from raw beef in Ibadan, Nigeria. J Microbiol Biotechnol Food Sci 8:770–773. https://doi.org/10.15414/jmbfs.2018.8.2.770-773

  14. Byakika S, Mukisa IM, Mugabi R, Muyanja C (2019) Antimicrobial activity of lactic acid bacteria starters against acid tolerant, antibiotic resistant, and potentially virulent E. coli isolated from a fermented sorghum-millet beverage. Int J Microbiol 2019:2013539. https://doi.org/10.1155/2019/2013539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jordaan K, Bezuidenhout CC (2016) Bacterial community composition of an urban river in the North West Province, South Africa, in relation to physico-chemical water quality. Environ Sci Pollut Res 23:5868–5880. https://doi.org/10.1007/s11356-015-5786-7

    Article  CAS  Google Scholar 

  16. Bories G, Brantom P, Brufau De Barberà J et al (2008) Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance 2 Prepared by the Panel on Additives and Products or Substances used in Animal Feed. EFSA J 732:1–15. https://doi.org/10.2903/j.efsa.2008.732

    Article  Google Scholar 

  17. Uymaz Tezel B (2019) Preliminary In vitro evaluation of the probiotic potential of the bacteriocinogenic strain Enterococcus lactis PMD74 isolated from ezine cheese. J Food Qual 2019:1–12. https://doi.org/10.1155/2019/4693513

    Article  CAS  Google Scholar 

  18. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31:438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x

    Article  PubMed  Google Scholar 

  19. Makinde OM, Sulyok M, Adeleke RA, Krska RA, Ezekiel CN (manuscript in preparation) Biotoxins and bacterial assessment of ready-to-eat foods vended in Lagos, Nigeria

  20. Ogunremi OR, Sanni AI, Agrawal R (2015) Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products. J Appl Microbiol 119:797–808. https://doi.org/10.1111/jam.12875

    Article  CAS  PubMed  Google Scholar 

  21. Ismail A, Ktari L, Ahmed M et al (2016) Antimicrobial activities of bacteria associated with the brown alga Padina pavonica. Front Microbiol 7:1072. https://doi.org/10.3389/fmicb.2016.01072

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113:1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008

    Article  CAS  Google Scholar 

  23. He ZS, Luo H, Cao CH, Cui ZW (2004) Photometric determination of hydroxyl free radical in Fenton system by brilliant green. Am J Chinese Clin Med 6:236–237

    Google Scholar 

  24. Addis MF, Tanca A, Uzzau S et al (2016) The bovine milk microbiota: insights and perspectives from -omics studies. Mol Biosyst 12:2359–2372. https://doi.org/10.1039/C6MB00217J

    Article  CAS  PubMed  Google Scholar 

  25. Xiong L, Ni X, Niu L et al (2019) Isolation and preliminary screening of a Weissella confusa Strain from giant panda (Ailuropoda melanoleuca). Probiotics Antimicrob Proteins 11:535–544. https://doi.org/10.1007/s12602-018-9402-2

    Article  CAS  PubMed  Google Scholar 

  26. Son SH, Jeon HL, Yang SJ et al (2017) In vitro characterization of Lactobacillus brevis KU15006, an isolate from kimchi, reveals anti-adhesion activity against foodborne pathogens and antidiabetic properties. Microb Pathog 112:135–141. https://doi.org/10.1016/j.micpath.2017.09.053

    Article  CAS  PubMed  Google Scholar 

  27. Ladha G, Jeevaratnam K (2018) Probiotic potential of Pediococcus pentosaceus LJR1, a bacteriocinogenic strain isolated from rumen liquor of goat (Capra aegagrus hircus). Food Biotechnol 32:60–77. https://doi.org/10.1080/08905436.2017.1414700

    Article  CAS  Google Scholar 

  28. Jafari-Nasab T, Khaleghi M, Farsinejad A, Khorrami S (2021) Probiotic potential and anticancer properties of Pediococcus sp. isolated from traditional dairy products. Biotechnol Rep 29:e00593. https://doi.org/10.1016/j.btre.2021.e00593

    Article  CAS  Google Scholar 

  29. Yang SJ, Kim K-T, Kim TY, Paik H-D (2020) Probiotic properties and antioxidant activities of Pediococcus pentosaceus SC28 and Levilactobacillus brevis KU15151 in fermented black gamju. Foods 9:1154. https://doi.org/10.3390/foods9091154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumara SS, Bashisht A, Venkateswaran G et al (2019) Characterization of novel Lactobacillus fermentum from curd samples of indigenous cows from Malnad Region, Karnataka, for their Aflatoxin B1 binding and probiotic properties. Probiotics Antimicrob Proteins 11:1100–1109. https://doi.org/10.1007/s12602-018-9479-7

    Article  CAS  PubMed  Google Scholar 

  31. Zommiti M, Bouffartigues E, Maillot O et al (2018) In vitro assessment of the probiotic properties and bacteriocinogenic potential of pediococcus pentosaceus MZF16 isolated from artisanal tunisian meat "dried ossban. Front Microbiol 9:2607. https://doi.org/10.3389/fmicb.2018.02607

    Article  PubMed  PubMed Central  Google Scholar 

  32. Soccol CR, de Souza Vandenberghe LP, Spier MR et al (2010) The potential of probiotics: a review. Food Technol Biotechnol 48:413–434

    CAS  Google Scholar 

  33. Raccach M (2014) Pediococcus. In: Encyclopedia of Food Microbiology: Second Edition. Elsevier Inc., pp 1–5

  34. Barbosa J, Borges S, Teixeira P (2015) Pediococcus acidilactici as a potential probiotic to be used in food industry. Int J Food Sci Technol 50:1151–1157. https://doi.org/10.1111/ijfs.12768

    Article  CAS  Google Scholar 

  35. Abriouel H, Lerma LL, Casado Muñoz MDC et al (2015) The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Front Microbiol 6:1197. https://doi.org/10.3389/fmicb.2015.01197

    Article  PubMed  PubMed Central  Google Scholar 

  36. Quijada NM, De Filippis F, Sanz JJ et al (2018) Different Lactobacillus populations dominate in “Chorizo de León” manufacturing performed in different production plants. Food Microbiol 70:94–102. https://doi.org/10.1016/j.fm.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  37. Billot-Klein D, Gutmann L, Sable S et al (1994) Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J Bacteriol 176:2398–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ammor MS, Flórez AB, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570

    Article  CAS  PubMed  Google Scholar 

  39. Danielsen M, Simpson PJ, O’connor EB et al (2007) Susceptibility of Pediococcus spp. to antimicrobial agents. J Appl Microbiol 102:384–389

    Article  CAS  PubMed  Google Scholar 

  40. Franz C, Endo A, Abriouel H et al (2014) The genus Pediococcus. Lact acid Bact Biodivers Taxon 359–376

  41. Sharma S, Agarwal N, Verma P (2012) Probiotics: the emissaries of health from microbial world. J Appl Pharm Sci 2:138–143

    Google Scholar 

  42. Faujdar SS, Mehrishi P, Bishnoi S, Sharma A (2016) Role of probiotics in human health and disease : an update. Int J Curr Microbiol App Sci 5:328–344

    Article  CAS  Google Scholar 

  43. Bao Y, Zhang Y, Zhang Y et al (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701. https://doi.org/10.1016/j.foodcont.2009.10.010

    Article  CAS  Google Scholar 

  44. Abbasiliasi S, Tan JS, Ibrahim TA et al (2012) Isolation of Pediococcus acidilactici Kp10 with ability to secrete bacteriocin-like inhibitory substance from milk products for applications in food industry. BMC Microbiol 12:260. https://doi.org/10.1186/1471-2180-12-260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ilavenil S, Park HS, Vijayakumar M et al (2015) Probiotic potential of lactobacillus strains with antifungal activity isolated from animal manure. Sci World J 2015:802570. https://doi.org/10.1155/2015/802570

    Article  Google Scholar 

  46. Lakra AK, Domdi L, Hanjon G et al (2020) Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. LWT 125:109261. https://doi.org/10.1016/j.lwt.2020.109261

    Article  CAS  Google Scholar 

  47. Prete R, Long SL, Gallardo AL et al (2020) Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-58069-5

    Article  CAS  Google Scholar 

  48. Yamasaki M, Minesaki M, Iwakiri A et al (2020) Lactobacillus plantarum 06CC2 reduces hepatic cholesterol levels and modulates bile acid deconjugation in Balb/c mice fed a high-cholesterol diet. Food Sci Nutr 8:6164–6173. https://doi.org/10.1002/fsn3.1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ali SA, Singh P, Tomar SK et al (2020) Proteomics fingerprints of systemic mechanisms of adaptation to bile in Lactobacillus fermentum. J Proteomics 213:103600. https://doi.org/10.1016/j.jprot.2019.103600

    Article  CAS  PubMed  Google Scholar 

  50. Vasiee A, Falah F, Behbahani BA, Tabatabaee-yazdi F (2020) Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. J Biosci Bioeng 130:471–479. https://doi.org/10.1016/j.jbiosc.2020.07.002

    Article  CAS  PubMed  Google Scholar 

  51. Lal Sarkar S, Akter Monika S, Kumar Sanyal S, Chandra Roy P (2020) Probiotic potential of Pediococcus acidilactici and Enterococcus faecium isolated from indigenous yogurt and raw goat milk antimicrobial effect of different spices against human oral pathogens. View project Bacteria from gold grains-diversity, functions and applications. View project. Artic Korean J Microbiol Biotechnol. https://doi.org/10.4014/mbl.1912.12009

    Article  Google Scholar 

  52. Barigela A, Bhukya B (2021) Probiotic Pediococcus acidilactici strain from tomato pickle displays anti-cancer activity and alleviates gut inflammation in-vitro. 3 Biotech 11:23. https://doi.org/10.1007/s13205-020-02570-1

    Article  PubMed  PubMed Central  Google Scholar 

  53. Laurencio-Silva M, Arteaga F, Rondón-Castillo AJ et al (2017) In vitro probiotic potential of Lactobacillus spp. strains from the vagina of dairy cows. Pastos Forrajes 40:206–215

    Google Scholar 

  54. Puniya M, Ravinder Kumar M, Panwar H et al (2016) Screening of lactic acid bacteria of different origin for their probiotic potential. J Food Process Technol 7

  55. Lashani E, Davoodabadi A, Dallal MMS (2020) Some probiotic properties of lactobacillus species isolated from honey and their antimicrobial activity against foodborne pathogens. Vet Res Forum 11:121–126. https://doi.org/10.30466/vrf.2018.90418.2188

  56. Fernández-Pacheco P, García-Béjar B, Jiménez-del Castillo M et al (2020) Potential probiotic and food protection role of wild yeasts isolated from pistachio fruits (Pistacia vera). J Sci Food Agric. https://doi.org/10.1002/jsfa.10839

    Article  PubMed  Google Scholar 

  57. Wang J, Zhang H, Du H et al (2019) Identification and characterization of Diutina rugosa SD-17 for potential use as a probiotic. LWT 109:283–288. https://doi.org/10.1016/j.lwt.2019.04.042

    Article  CAS  Google Scholar 

  58. Wang CY, Lin PR, Ng CC, Shyu YT (2010) Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage. Anaerobe 16:578–585. https://doi.org/10.1016/j.anaerobe.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  59. Lee N, Kwon KY, Oh SK et al (2014) A multiplex PCR assay for simultaneous detection of escherichia coli O157:H7, Bacillus cereus, vibrio parahaemolyticus, salmonella spp., listeria monocytogenes, and staphylococcus aureus in Korean ready-to-eat food. Foodborne Pathog Dis 11:574–580. https://doi.org/10.1089/fpd.2013.1638

    Article  CAS  PubMed  Google Scholar 

  60. Garcia-Cayuela T, Korany AM, Bustos I et al (2014) Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res Int 57:44–50

    Article  CAS  Google Scholar 

  61. Cozzolino A, Vergalito F, Tremonte P et al (2020) Preliminary evaluation of the safety and probiotic potential of Akkermansia muciniphila DSM 22959 in comparison with Lactobacillus rhamnosus GG. Microorganisms 8:189. https://doi.org/10.3390/microorganisms8020189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cruz-Guerrero A, Hernández-Sánchez H, Rodríguez-Serrano G et al (2014) Commercial probiotic bacteria and prebiotic carbohydrates: a fundamental study on prebiotics uptake, antimicrobials production and inhibition of pathogens. J Sci Food Agric 94:2246–2252

    Article  CAS  PubMed  Google Scholar 

  63. Merino L, Trejo FM, De Antoni G, Golowczyc MA (2019) Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry. Food Res Int 123:258–265

    Article  CAS  PubMed  Google Scholar 

  64. Gandomi H, Farhangfar A, Akhondzadeh Basti A et al (2019) Auto and co-aggregation, hydrophobicity and adhesion properties of Lactobacillus plantarum strains isolated from Siahmazgi traditional cheese. Food Health 2:1–5

    Google Scholar 

  65. Chervinets Y, Chervinets V, Shenderov B et al (2018) Adaptation and probiotic potential of lactobacilli, isolated from the oral cavity and intestines of healthy people. Probiotics Antimicrob Proteins 10:22–33

    Article  CAS  PubMed  Google Scholar 

  66. Vidhyasagar V, Jeevaratnam K (2013) Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. J Funct Foods 5:235–243. https://doi.org/10.1016/j.jff.2012.10.012

    Article  CAS  Google Scholar 

  67. Sabir F, Beyatli Y, Cokmus C, Onal-Darilmaz D (2010) Assessment of potential probiotic properties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains isolated from Kefir. J Food Sci 75:M568–M573. https://doi.org/10.1111/j.1750-3841.2010.01855.x

    Article  CAS  PubMed  Google Scholar 

  68. Ilavenil S, Vijayakumar M, Kim DH et al (2016) Assessment of probiotic, antifungal and cholesterol lowering properties of Pediococcus pentosaceus KCC-23 isolated from Italian ryegrass. J Sci Food Agric 96:593–601. https://doi.org/10.1002/jsfa.7128

    Article  CAS  PubMed  Google Scholar 

  69. Fhoula I, Rehaiem A, Najjari A et al (2018) Functional probiotic assessment and in vivo cholesterol-lowering efficacy of Weissella sp. associated with arid lands living-hosts. Biomed Res Int. https://doi.org/10.1155/2018/1654151

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sharma S, Kandasamy S, Kavitake D, Shetty PH (2018) Probiotic characterization and antioxidant properties of Weissella confusa KR780676, isolated from an Indian fermented food. LWT 97:53–60. https://doi.org/10.1016/j.lwt.2018.06.033

    Article  CAS  Google Scholar 

  71. Simões LA, Cristina de Souza A, Ferreira I et al (2021) Probiotic properties of yeasts isolated from Brazilian fermented table olives. J Appl Microbiol 131:1983–1997. https://doi.org/10.1111/JAM.15065

    Article  PubMed  Google Scholar 

  72. Menezes AGT, Ramos CL, Cenzi G et al (2020) Probiotic potential, antioxidant activity, and phytase production of indigenous yeasts isolated from indigenous fermented foods. Probiotics Antimicrob Proteins 12:280–288. https://doi.org/10.1007/s12602-019-9518-z

    Article  CAS  PubMed  Google Scholar 

  73. Ouwehand AC, Salminen SJ (1998) The health effects of cultured milk products with viable and non-viable bacteria. Int Dairy J 8:749–758

    Article  Google Scholar 

  74. Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22:1255. https://doi.org/10.3390/molecules22081255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Güllüce M, Karadayı M, Barış Ö (2013) Bacteriocins: promising natural antimicrobials. Local Environ 3:6–10

    Google Scholar 

  76. Soltani S, Hammami R, Cotter PD et al (2021) Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 45:fuaa039

    Article  PubMed  Google Scholar 

  77. Nascimento BL, Delabeneta MF, Rosseto LRB et al (2020) Yeast mycocins: a great potential for application in health. FEMS Yeast Res 20:16. https://doi.org/10.1093/femsyr/foaa016

    Article  CAS  Google Scholar 

  78. Shruthi B, Deepa N, Somashekaraiah R et al (2022) Exploring biotechnological and functional characteristics of probiotic yeasts: a review. Biotechnol Rep 34:e00716. https://doi.org/10.1016/j.btre.2022.e00716

    Article  CAS  Google Scholar 

  79. Khay EO, Castro LMP, Bernárdez PF et al (2012) Growth of Enterococcus durans E204 producing bacteriocin-like substance in MRS broth: description of the growth and quantification of the bacteriocin-like substance. African J Biotechnol 11:659–665

    CAS  Google Scholar 

  80. Siamansouri M, Mozaffari S, Alikhani F (2013) Bacteriocins and lactic acid bacteria. J Biol 2:227–234

    Google Scholar 

  81. Kiymaci ME, Gumustas M, Altanlar N et al (2018) Determination of probiotic abilities and lactic acid content of Pediococcus acidilactici. Curr Anal Chem 15:511–521. https://doi.org/10.2174/1573411014666180912130839

    Article  CAS  Google Scholar 

  82. Djide NJN, Asri RM, Djide N (2020) Sourcing new potential bacteriocin-producing bacteria from dangke, ethnic cheese of Enrekang, Indonesia. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd, p 012035

  83. Manu P, Agyei M (2017) Bacteriocin activity of lactic acid bacteria isolated from Nunu, a Spontaneously Fermented Milk. 67

  84. Kazi TA, Acharya A, Mukhopadhyay BC et al (2022) Plasmid-based gene expression systems for lactic acid bacteria: a review. Microorganisms 10:1132. https://doi.org/10.3390/MICROORGANISMS10061132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  CAS  PubMed  Google Scholar 

  86. Ridlon JM, Harris SC, Bhowmik S et al (2016) Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7:22–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gadhiya D, Patel AR, Prajapati JB (2015) Current trend and future prospective of functional probiotic milk chocolates and related products - a review. Czech J Food Sci 33:295–301. https://doi.org/10.17221/676/2014-CJFS

  88. Kadaikunnan S, Rejiniemon T, Khaled JM et al (2015) In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann Clin Microbiol Antimicrob 14:9. https://doi.org/10.1186/s12941-015-0069-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tan LT-H, Chan K-G, Khan TM et al (2017) Streptomyces sp. MUM212 as a source of antioxidants with radical scavenging and metal chelating properties. Front Pharmacol 8:276. https://doi.org/10.3389/fphar.2017.00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim H, Kim JS, Kim YG et al (2020) Antioxidant and probiotic properties of lactobacilli and bifidobacteria of human origins. Biotechnol Bioprocess Eng 25:421–430. https://doi.org/10.1007/s12257-020-0147-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Society for Applied Microbiology (SfAM) in the UK for partly supporting the study through the 2019 Research Support Grant awarded to MOA under the supervision of CNE.

Funding

This study was partly funded by society for applied microbiology (United Kingdom) through the 2019 Research Support Grant.

Author information

Authors and Affiliations

Authors

Contributions

M.O.A: conception of study, design of study, sampling and experimentation, data analysis, manuscript preparation, fine-tuning and revision of manuscript, funding acquisition. O.R.O: design of study, fine-tuning and revision of manuscript. R.A.A: fine-tuning and revision of manuscript. C.N.E: conception of study, design of study, fine-tuning and revision of manuscript, funding acquisition, supervision of study.

Corresponding author

Correspondence to Chibundu N. Ezekiel.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinyemi, M.O., Ogunremi, O.R., Adeleke, R.A. et al. Probiotic Potentials of Lactic Acid Bacteria and Yeasts from Raw Goat Milk in Nigeria. Probiotics & Antimicro. Prot. 16, 163–180 (2024). https://doi.org/10.1007/s12602-022-10022-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-10022-w

Keywords

Navigation