Skip to main content

Advertisement

Log in

Antibacterial Property and Metagenomic Analysis of Milk Kefir

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Milk kefir fermentation has been used in households for generations. Consumption of milk kefir has been associated with various health benefits, presumably from the probiotics of yeast and bacteria that make up the kefir grains. In addition, many of the microbes are known to produce novel antimicrobial compounds that can be used for other applications. The microbes living inside kefir grains differ significantly depending on geographical location and production methods. In this study, we aimed to use metagenomic analysis of fermented milk by using three different kefir grains (kefir 1, kefir 2, and kefir 3) from different US sources. We analyzed the microbial compositions of the three milk fermentation samples. This study revealed that each sample contains unique and distinct groups of microbes, kefir 1 showed the least diversity, and kefir 3 showed the highest diversity. Kefir 3 is rich in Proteobacteria while kefir 2 is dominated by the Firmicutes. Using bacterial indicator growth analyses carried out by continuous readings from microplate-based bioreactor assays suggested that kefir 2 fermentation filtrate has higher antibacterial property. We have screened 30 purified cultures of kefir 2 sample and isolated two lactic acid bacteria strains with higher antibacterial activities; the two strains were identified as Leuconostoc mesenteroides 28–1 and Lentilactobacillus kefiri 25–2 by 16S genomic PCR with confirmed antibacterial activities of fermentation filtrate after growing under both aerobic and anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this published article.

References

  1. Rosa DD et al (2017) Milk kefir: nutritional, microbiological and health benefits. Nutr Res Rev 30(1):82–96

    Article  CAS  PubMed  Google Scholar 

  2. Nielsen B, Gürakan GC, Ünlü G (2014) Kefir: a multifaceted fermented dairy product. Probiotics and antimicrobial proteins 6(3):123–135

    Article  CAS  PubMed  Google Scholar 

  3. Bengoa AA et al (2019) Kefir micro-organisms: their role in grain assembly and health properties of fermented milk. J Appl Microbiol 126(3):686–700

    Article  CAS  PubMed  Google Scholar 

  4. Marshall VM, Cole WM, Brooker B (1984) Observations on the structure of kefir grains and the distribution of the microflora. J Appl Bacteriol 57(3):491–497

    Article  Google Scholar 

  5. Garrote GL, Abraham AG, De Antoni GL (2001) Chemical and microbiological characterisation of kefir grains. J Dairy Res 68:639–652

    Article  CAS  PubMed  Google Scholar 

  6. Garofalo C et al (2015) Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol 49:123–133

    Article  CAS  PubMed  Google Scholar 

  7. Chen HC, Wang SY, Chen MJ (2008) Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol 25(3):492–501

    Article  CAS  PubMed  Google Scholar 

  8. Azizi NF et al (2021) Kefir and its biological activities. Foods 10

  9. Cevikbas A et al (1994) Antitumoural antibacterial and antifungal activities of kefir and kefir grain. Phytother Res 8(2):78–82

    Article  Google Scholar 

  10. Guzel-Seydim ZB et al (2011) Review: functional properties of kefir. Crit Rev Food Sci Nutr 51(3):261–268

    Article  CAS  PubMed  Google Scholar 

  11. Bourrie BCT, Willing BP, Cotter PD (2016) The microbiota and health promoting characteristics of the fermented beverage kefir. Front Microbiol 7

  12. Marshall VM, Cole WM (1985) Methods for making kefir and fermented milks based on kefir. J Dairy Res 52(3):451–456

    Article  CAS  Google Scholar 

  13. Figler M et al (2006) Effect of special Hungarian probiotic kefir on faecal microflora. World J Gastroenterol: WJG 12(7):1129

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen Y et al (2013) Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on enterohemorrhagic Escherichia coli infection using mouse and intestinal cell models. J Dairy Sci 96(12):7467–7477

    Article  CAS  PubMed  Google Scholar 

  15. Santos A et al (2003) The antimicrobial properties of different strains of Lactobacillus spp. isolated from kefir. Syst Appl Microbiol 26(3):434–437

  16. Leite AM et al (2012) Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol 31(2):215–221

    Article  CAS  PubMed  Google Scholar 

  17. Fu L et al (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12:385

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sunagawa S et al (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science 348(6237):1261359

  20. Mende DR et al (2012) Assessment of metagenomic assembly using simulated next generation sequencing data. PloS One 7(2):e31386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu S et al (2019) Increased ethanol tolerance associated with the pntAB locus of Oenococcus oeni and Lactobacillus buchneri. J Ind Microbiol Biotechnol 46(11):1547–1556

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen HB et al (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32(8):822–828

    Article  CAS  PubMed  Google Scholar 

  23. Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38(12):e132

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li J et al (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32(8):834–841

    Article  CAS  PubMed  Google Scholar 

  25. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59–60

    Article  CAS  PubMed  Google Scholar 

  26. Huson DH et al (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21(9):1552–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huson DH et al (2007) MEGAN analysis of metagenomic data. Genome Res 17(3):377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Minot SS, Willis AD (2019) Clustering co-abundant genes identifies components of the gut microbiome that are reproducibly associated with colorectal cancer and inflammatory bowel disease. Microbiome 7(1):110

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kanehisa M et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Database issue): p. D354–7

  30. Kanehisa M et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue): p. D199–205

  31. Cantarel BL et al (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(Database issue): p. D233–8

  32. Garrote GL, Abraham AG, De Antoni GL (2000) Inhibitory power of kefir: the role of organic acids. J Food Prot 63(3):364–369

    Article  CAS  PubMed  Google Scholar 

  33. García JA et al (2000) Pulsed-field gel electrophoresis analysis of Aeromonas salmonicida ssp. salmonicida. FEMS Microbiol Lett 190(1): p. 163–166

  34. Tong Z et al (2012) An in vitro investigation of Lactococcus lactis antagonizing cariogenic bacterium Streptococcus mutans. Arch Oral Biol 57(4):376–382

    Article  CAS  PubMed  Google Scholar 

  35. Reddy S et al (2021) Comparative evaluation of efficacy of kefir milk probiotic curd and probiotic drink on Streptococcus mutans in 8–12-year-old children: an in vivo study. Int J Clin Pediatr Dent 14(1):120–127

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cooney S et al (2014) Bacteria: other pathogenic Enterobacteriaceae – Enterobacter and other genera. In: Motarjemi Y (ed) Encyclopedia of food safety. Academic Press, Waltham, pp 433–441

    Chapter  Google Scholar 

  37. Zeng X et al (2022) Metagenomic analysis of microflora structure and functional capacity in probiotic Tibetan kefir grains. Food Res Int 151:110849

    Article  CAS  PubMed  Google Scholar 

  38. Siedler S et al (2020) Competitive exclusion is a major bioprotective mechanism of lactobacilli against fungal spoilage in fermented milk products. Appl Environ Microbiol 86(7)

  39. Ioannou A, Knol J, Belzer C (2021) Microbial glycoside hydrolases in the first year of life: an analysis review on their presence and importance in infant gut. Front Microbiol 12:631282–631282

    Article  PubMed  PubMed Central  Google Scholar 

  40. Biely P (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30(6):1575–1588

    Article  CAS  PubMed  Google Scholar 

  41. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70(2):283–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chakraborty S et al (2017) 23 - Polysaccharide lyases, in Current developments in biotechnology and bioengineering, A. Pandey, S. Negi, and C.R. Soccol, Editors Elsevier. p. 527–539

Download references

Acknowledgements

We thank Eric Hoecker and Amber Anderson for their excellent technical assistance.

Funding

USDA is an equal opportunity provider and employer. This work was supported in part by the US Department of Agriculture, Agricultural Research Service. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqing Liu.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Lu, SY., Qureshi, N. et al. Antibacterial Property and Metagenomic Analysis of Milk Kefir. Probiotics & Antimicro. Prot. 14, 1170–1183 (2022). https://doi.org/10.1007/s12602-022-09976-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09976-8

Keywords

Navigation