Skip to main content
Log in

Investigation of Antibacterial Activity and Probiotic Properties of Strains Belonging to Lactobacillus and Bifidobacterium Genera for Their Potential Application in Functional Food and Feed Products

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

For novel food/feed product formulation, the selection of the right culture with probiotic properties is essential. The purpose of this research was to evaluate antibacterial activity and probiotic features of Lactobacillus and Bifidobacterium spp. for its potential application in functional food/feed products as supplement. The evaluation of antibacterial activities was carried out by agar diffusion assay and broth inhibition assay methods against twelve pathogenic strains belonging to Staphylococcus aureus, Escherichia coli, Staphylococcus chromogenes, and Staphylococcus hyicus species. Metabolites produced by Lactobacillus paracasei subsp. paracasei DSM 20020, L. paracasei subsp. paracasei DSM 4905, and L. gasseri DSM 20077 inhibited the growth of all tested pathogens. The strains were characterized in vitro for their probiotic characteristics such as resistance to low pH and bile salts, antibiotic sensitivity by gradient diffusion using MIC Test Strips, autoaggregation and coaggregation assay with E. coli DSM 27503, and antioxidant activity by 1-diphenyl-2-picrylhydrazyl (DPPH) and 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assays. The results demonstrated that tested probiotic properties varied among the strains. Lactobacillus spp. tolerated pH 3 for 4 h, while 8 of 14 strains survived 4 h in pH 2. Most of tested strains were able to tolerate 0.3% bile salts for 4 h. All tested strains were sensitive to ampicillin. No gelatinase and hemolytic activities were detected. These results suggest Lactobacillus acidophilus DSM 20079, Bifidobacterium pseudolongum DSM 20099, and Bifidobacterium animalis DSM 20105 as probiotic candidates for the development of functional food/feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Markowiak P, Ślizewska K (2018) The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog 10:21. https://doi.org/10.1186/s13099-018-0250-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brown AC, Valiere A (2004) Probiotics and medical nutrition therapy. Nutr Clin Care 7:56–68

    PubMed  PubMed Central  Google Scholar 

  3. World Health Organisation (WHO) and Food and Agriculture Organization of United Nations (FAO) (2006) Probiotics in food: Health and nutritional properties and guidelines for evaluation. FAO food and nutrition paper, ISSN 0254–4725

  4. Homayoni RA, Vaghef Mehrabany E, Alipoor B, Vaghef Mehrabany L (2016) The comparison of food and supplement as probiotic delivery vehicles. Crit Rev Food Sci Nutr 56:896–909. https://doi.org/10.1080/10408398.2012.733894

    Article  CAS  Google Scholar 

  5. Song D, Ibrahim S, Hayek S (2012) Recent application of probiotics in food and agricultural science. In: Everlon Cid Rigobelo (Ed) Probiotics, IntechOpen, https://doi.org/10.5772/50121

  6. Mulaw G, Sisay Tessema T, Muleta D, Tesfaye A (2019) In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. Int J Microbiol, Article ID 7179514. https://doi.org/10.1155/2019/7179514

  7. Wei X, Zhang Y, Zhou H, Tian F, Ni Y (2019) Antimicrobial activities and in vitro properties of cold-adapted Lactobacillus strains isolated from the intestinal tract of cold water fishes of high latitude water areas in Xinjiang. China. BMC Microbiol 19(1):247. https://doi.org/10.1186/s12866-019-1623-3

    Article  CAS  PubMed  Google Scholar 

  8. Vernazza CL, Gibson GR, Rastall RA (2006) Carbohydrate preference, acid tolerance and bile tolerance in five strains of Bifidobacterium. J Appl Microbiol 100:846–853. https://doi.org/10.1111/j.1365-2672.2006.02832.x

    Article  CAS  PubMed  Google Scholar 

  9. Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N (2019) Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 11(7):1591. https://doi.org/10.3390/nu11071591

    Article  CAS  PubMed Central  Google Scholar 

  10. Sahadeva RPK, Leong SF, Chua KH et al (2011) Survival of commercial probiotic strains to pH and bile. Int Food Res J 18(4):1515–1522

    Google Scholar 

  11. Ruiz L, Margolles A, Sánchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396. https://doi.org/10.3389/fmicb.2013.00396

    Article  PubMed  PubMed Central  Google Scholar 

  12. Masco L, Crockaert C, Van Hoorde K, Swings J, Huys G (2007) In vitro assessment of the gastrointestinal transit tolerance of taxonomic reference strains from human origin and probiotic product isolates of Bifidobacterium. J Dairy Sci 90:3572–3578. https://doi.org/10.3168/jds.2006-548

    Article  CAS  PubMed  Google Scholar 

  13. Liu C-F, Pan T-M (2010) In vitro effects of lactic acid bacteria on cancer cell viability and antioxidant activity. J Food Drug Anal 18(2):77–86. https://doi.org/10.38212/2224-6614.2287

    Article  Google Scholar 

  14. Amaretti A, Di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A (2013) Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Appl Microbiol Biotechnol 97:809–817. https://doi.org/10.1007/s00253-012-4241-7

    Article  CAS  PubMed  Google Scholar 

  15. Yong CC, Khoo BY, Sasidharan S, Piyawattanametha W, Kim SH, Khemthongcharoen N, Chuah LO, Ang MY, Liong MT (2015) Activity of crude and fractionated extracts by lactic acid bacteria (LAB) isolated from local dairy, meat, and fermented products against Staphylococcus aureus. Ann Microbiol 65:1037–1047. https://doi.org/10.1007/s13213-014-0949-1

    Article  CAS  Google Scholar 

  16. Plessas S, Nouska C, Karapetsas A, Kazakos S, Alexopoulos A, Mantzourani I, Chondrou P, Fournomiti M, Galanis A, Bezirtzoglou E (2017) Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from Feta-type cheese. Food Chem 226:102–108. https://doi.org/10.1016/j.foodchem.2017.01.052

    Article  CAS  PubMed  Google Scholar 

  17. Mantzourani I, Kazakos S, Terpou A, Alexopoulos A, Bezirtzoglou E, Bekatorou A, Plessas S (2018) Potential of the probiotic Lactobacillus plantarum ATCC 14917 strain to produce functional fermented pomegranate juice. Foods 8(1):4. https://doi.org/10.3390/foods8010004

    Article  CAS  PubMed Central  Google Scholar 

  18. Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sakei isolated from meat. Appl Environ Microbiol 55:901–1906. https://doi.org/10.1128/AEM.55.8.1901-1906.1989

    Article  Google Scholar 

  19. Jena PK, Trivedi D, Thakore K, Chaudhary H, Giri SS, Seshadri S (2013) Isolation and characterization of probiotic properties of Lactobacilli isolated from rat fecal microbiota. Microbiol Immunol 57:407–416. https://doi.org/10.1111/1348-0421.12054

    Article  CAS  PubMed  Google Scholar 

  20. Son SH, Yang SJ, Jeon HL, Yu HS, Lee NK, Park YS, Paik HD (2018) Antioxidant and immunostimulatory effect of potential probiotic Lactobacillus paraplantarum SC61 isolated from Korean traditional fermented food, jangajji. Microb Pathog 125:486–492. https://doi.org/10.1016/j.micpath.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  21. Maragkoudakis PA, Mountzouris KC, Psyrras D, Cremonese S, Fischer J, Cantor MD, Tsakalidou E (2009) Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int J Food Microbiol 130:219–226. https://doi.org/10.1016/j.ijfoodmicro.2009.01.027

    Article  CAS  PubMed  Google Scholar 

  22. Kondrotiene K, Lauciene L, Andruleviciute V, Kasetiene N, Serniene L, Sekmokiene D, Malakauskas M (2020) Safety assessment and preliminary in vitro evaluation of probiotic potential of Lactococcus lactis strains naturally present in raw and fermented milk. Curr Microbiol 77:3013–3023. https://doi.org/10.1007/s00284-020-02119-8

    Article  CAS  PubMed  Google Scholar 

  23. Liao SF, Nyachoti M (2017) Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr 3:331–343. https://doi.org/10.1016/j.aninu.2017.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lazarenko L, Babenko L, Sichel LS, Pidgorskyi V, Mokrozub V, Voronkova O, Spivak M (2012) Antagonistic action of Lactobacilli and Bifidobacteria in relation to Staphylococcus aureus and their influence on the immune response in cases of intravaginal Staphylococcosis in mice. Probiotics Antimicrob Proteins 4:78–89. https://doi.org/10.1007/s12602-012-9093-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22:1255. https://doi.org/10.3390/molecules22081255

    Article  CAS  PubMed Central  Google Scholar 

  26. Lambert RJ, Stratford M (1999) Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 86:157–164. https://doi.org/10.1046/j.1365-2672.1999.00646.x

    Article  CAS  PubMed  Google Scholar 

  27. Balciunas EM, Castillo Martinez FA, Todorov SD, Franco BDGM, Convertic A, de Souza Oliveira RP (2013) Novel biotechnological applications of bacteriocins: a review. Food Control 32:134–142. https://doi.org/10.1016/j.foodcont.2012.11.025

    Article  CAS  Google Scholar 

  28. Cintas LM, Herranz C, Hernández PE, Casaus MP, Nes LF (2001) Review: Bacteriocins of lactic acid bacteria. Food Sci Tech Int 7:281–305. https://doi.org/10.1106/R8DE-P6HU-CLXP-5RYT

    Article  CAS  Google Scholar 

  29. Vignolo G, Fadda S, Dekairuz MN, Holgado APD, Oliver G (1998) Effects of curing additives on the control of Listeria monocytogenes by lactocin 705 in meat slurry. Food Microbiol 15:259–264. https://doi.org/10.1006/fmic.1997.0166

    Article  CAS  Google Scholar 

  30. Coman MM, Verdenelli MC, Cecchini C et al (2014) In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501 ®, Lactobacillus paracasei IMC 502 ® and SYNBIO ® against pathogens. J Appl Microbiol 117:518–527. https://doi.org/10.1111/jam.12544

    Article  CAS  PubMed  Google Scholar 

  31. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  32. Šuškovič J, Kos B, Beganovič J, Pavunc AL, Habjanič K, Matošić S (2010) Antimicrobial activity – the most important property of probiotic and starter lactic acid bacteria. Food Technol Biotechnol 48:296–307

    Google Scholar 

  33. Rönkä E, Malinen E, Saarela M, Rinta-Koski M, Aarnikunnas J, Palva A (2003) Probiotic and milk technological properties of Lactobacillus brevis. Int J Food Microbiol 83:63–74. https://doi.org/10.1016/S0168-1605(02)00315-X

    Article  CAS  PubMed  Google Scholar 

  34. Sánchez B, Champomier-Vergès MC, Collado MDC, Anglade P, Baraige F, Sanz Y, de los Reyes-Gavilán CG, Margolles A, Zagorec M, (2007) Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. Appl Environ Microbiol 73:6450–6459. https://doi.org/10.1128/AEM.00886-07F

    Article  PubMed  PubMed Central  Google Scholar 

  35. Matsumoto M, Ohishi H, Benno Y (2004) H+-ATPase activity in Bifidobacterium with special reference to acid tolerance. Int J Food Microbiol 93:109–113. https://doi.org/10.1016/j.ijfoodmicro.2003.10.009

    Article  CAS  PubMed  Google Scholar 

  36. Corcoran BM, Stanton C, Fitzgerald GF, Ross RP (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71:3060–3067. https://doi.org/10.1128/AEM.71.6.3060-3067.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fatemeh S, Mustafa S, Ariff A, Manap YA (2011) Optimization of a cryoprotective medium and survival of freeze-dried Bifidobacterium infantis 20088 throughout storage, rehydration and gastrointestinal tract transit for infant formula probiotic applications. African J Microbiol Res 5:3373–3384. https://doi.org/10.5897/ajmr11.319

    Article  CAS  Google Scholar 

  38. Lavilla-Lerma L, Pérez-Pulido R, Martínez-Bueno M et al (2013) Characterization of functional, safety, and gut survival related characteristics of Lactobacillus strains isolated from farmhouse goat’s milk cheeses. Int J Food Microbiol 163:136–145. https://doi.org/10.1016/j.ijfoodmicro.2013.02.015

    Article  CAS  PubMed  Google Scholar 

  39. Abriouel H, Knapp CW, Gálvez A, Benomar N (2017) Antibiotic resistance profile of microbes from traditional fermented foods. In: Martínez-Villaluenga C, Peñas E (eds) Frías J. Fermented foods in health and disease prevention, Elsevier, pp 675–704

    Google Scholar 

  40. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10(6):2740. https://doi.org/10.2903/j.efsa.2012.2740

    Article  CAS  Google Scholar 

  41. Campedelli I, Mathur H, Salvetti E et al (2019) Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl Environ Microbiol 85(1):e01738-e1818. https://doi.org/10.1128/AEM.01738-18

    Article  CAS  PubMed  Google Scholar 

  42. Gueimonde M, Sánchez B, Reyes-Gavilán CG, Margolles A (2013) Antibiotic resistance in probiotic bacteria. Front Microbiol 4:202. https://doi.org/10.3389/fmicb.2013.00202

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kheadr E, Dabour N, Le Lay C et al (2007) Antibiotic susceptibility profile of bifidobacteria as affected by oxgall, acid, and hydrogen peroxide stress. Antimicrob Agents Chemother 51:169–174. https://doi.org/10.1128/AAC.00261-06

    Article  CAS  PubMed  Google Scholar 

  44. Sharma C, Gulati S, Thakur N, Singh BP, Gupta S, Kaur S, Mishra SK, Puniya AK, Singh Gill JP, Panwar H (2017) Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech 7:1–14. https://doi.org/10.1007/s13205-017-0682-0

    Article  Google Scholar 

  45. Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073. https://doi.org/10.1007/s00217-007-0632-x

    Article  CAS  Google Scholar 

  46. Aziz G, Fakhar H, Rahman S, Tariq M, Zaidi A (2019) An assessment of the aggregation and probiotic characteristics of Lactobacillus species isolated from native (desi) chicken gut. J Appl Poult Res 28:846–857. https://doi.org/10.3382/japr/pfz042

    Article  CAS  Google Scholar 

  47. Sophatha B, Piwat S, Teanpaisan R (2020) Adhesion, anti-adhesion and aggregation properties relating to surface charges of selected Lactobacillus strains: study in Caco-2 and H357 cells. Arch Microbiol 202:1349–1357. https://doi.org/10.1007/s00203-020-01846-7

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W (2017) Antioxidant properties of probiotic bacteria. Nutrients 9:521. https://doi.org/10.3390/nu9050521

    Article  CAS  PubMed Central  Google Scholar 

  49. Chen P, Zhang Q, Dang H, Liu X, Tian F, Zhao J, Chen Y, Zhang H, Chen W (2014) Screening for potential new probiotic based on probiotic properties and α-glucosidase inhibitory activity. Food Control 35:65–72. https://doi.org/10.1016/j.foodcont.2013.06.027

    Article  CAS  Google Scholar 

  50. Ragul K, Kandasamy S, Devi PB, Shetty PH (2020) Evaluation of functional properties of potential probiotic isolates from fermented brine pickle. Food Chem 311:126057. https://doi.org/10.1016/j.foodchem.2019.126057

    Article  CAS  PubMed  Google Scholar 

  51. Kim JY, Choi SI, Heo TR (2003) Screening of antioxidative activity of Bifidobacterium species isolated from Korean infant feces and their identification. Biotechnol Bioprocess Eng 8:199–204. https://doi.org/10.1007/BF02935897

    Article  CAS  Google Scholar 

  52. Snydman DR (2008) The safety of probiotics. Clin Infect and Dis 46:S104–S111. https://doi.org/10.1086/523331

    Article  Google Scholar 

  53. Marroki A, Zuniga M, Kihal M, Perez-Martinez G (2011) Characterization of Lactobacillus from Algerian goat’s milk based on phenotypic, 16S rDNA sequencing and their technological properties. Braz J Microbiol 42:158–171. https://doi.org/10.1590/S1517-83822011000100020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barbosa J, Gibbs PA, Teixeira P (2010) Virulence factors among enterococci isolated from traditional fermented meat products produced in the north Portugal. Food Control 21:651–656. https://doi.org/10.1016/j.foodcont.2009.10.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Cizeikiene.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cizeikiene, D., Jagelaviciute, J. Investigation of Antibacterial Activity and Probiotic Properties of Strains Belonging to Lactobacillus and Bifidobacterium Genera for Their Potential Application in Functional Food and Feed Products. Probiotics & Antimicro. Prot. 13, 1387–1403 (2021). https://doi.org/10.1007/s12602-021-09777-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09777-5

Keywords

Navigation