Skip to main content
Log in

Activity of crude and fractionated extracts by lactic acid bacteria (LAB) isolated from local dairy, meat, and fermented products against Staphylococcus aureus

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate anti-staphylococcal properties of crude and fractionated extracts of lactic acid bacteria (LAB) isolated from local meat, dairy, and fermented products. A total of 36 LAB isolates were obtained and identified via 16S rDNA sequencing. Cell-free supernatant (CFS) of all isolates exhibiting a statistically significant inhibition against Staphylococcus aureus (ρ < 0.05), with six LAB isolates exhibiting a more prevalent inhibition. The inhibition effects of cell wall and intracellular extracts from the six prevalent isolates were evaluated. Lactobacillus plantarum USM8613 was the most prominent isolate with both CFS and cell wall extract exhibiting the most prevalent inhibition against S. aureus. Scanning electron micrographs showed alteration of S. aureus membrane morphology upon CFS treatment, suggesting an anti-staphylococcal effect via membrane destruction. Confocal laser scanning micrographs showed inhibition against biofilm formations by S. aureus in porcine skins upon CFS treatment. The CFS from L. plantarum USM8613 was separated into protein, lipid, and polysaccharide fractions for evaluation of anti-staphylococcal activity and chemical characterization. All fractions inhibited growth of S. aureus (ρ < 0.05), with protein fractions exhibiting stronger inhibition effect. Data from our present study showed that extracts from LAB could be applied as biopreservatives in the food industries and/or as an antimicrobial agent against bacterial infections for cosmeceutical and pharmaceutical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altieri C, Bevilacqua A, Cardillo D, Sinigaglia M (2009) Effectiveness of fatty acids and their monoglycerides against Gram-negative pathogens. Int J Food Sci Technol 44:359–366

  • Atrih A, Rekhif N, Moir A, Lebrihi A, Lefebvre G (2001) Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int J Food Microbiol 68:93–104

    Article  CAS  PubMed  Google Scholar 

  • Bergsson G, Arnfinnsson J, Steingrímsson Ó, Thormar H (2001) In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob Agents Chemother 45:3209–3212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bidlingmeyer BA, Cohen SA, Tarvin TL (1984) Rapid analysis of amino acids using pre-column derivatization. J Chromatogr B Biomed Sci Appl 336:93–104

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bruno MEC, Montville TJ (1993) Common mechanistic action of bacteriocins from lactic acid bacteria. Appl Environ Microbiol 59:3003–3010

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    Article  CAS  PubMed  Google Scholar 

  • Christie WW (1989) Gas chromatography and lipids. Somerset, Scotland

    Google Scholar 

  • Das D, Goyal A (2013) Anti-listerial bactericidal activity of Lactobacillus plantarum DM5 isolated from fermented beverage marcha. Probiotics Antimicrob Proteins 5:206–215

    Article  CAS  Google Scholar 

  • de Roos NM, Katan MB (2000) Effects of probiotics bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am J Clin Nutr 71:405–411

    PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ehrmann MA, Remiger A, Eijsink VG, Vogel RF (2000) A gene cluster encoding plantaricin 1.25 β and other bacteriocin-like peptides in Lactobacillus plantarum TMW1. 25. BB-Acta Gene Struct Expr 1490:355–361

    Article  CAS  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3:948–958

    Article  CAS  PubMed  Google Scholar 

  • Fraud S, Maillard J-Y, Kaminski MA, Hanlon GW (2005) Activity of amine oxide against biofilms of Streptococcus mutans: a potential biocide for oral care formulations. J Antimicrob Chemother 56:672–677

    Article  CAS  PubMed  Google Scholar 

  • Glaasker E, Konings WN, Poolman B (1996) Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J Bacteriol 178:575–582

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hilmarsson H, Traustason BS, Kristmundsdóttir T, Thormar H (2007) Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: comparison at different pH levels. Arch Virol 152:2225–2236

    Article  CAS  PubMed  Google Scholar 

  • Hofmann K, Henis B, Charles P (1957) Fatty acid interconversions in lactobacilli. J Biol Chem 228:349–355

    CAS  PubMed  Google Scholar 

  • Holzapfel WH, Haberer P, Geisen R, Björkroth J, Schillinger U (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73:365s–373s

    CAS  PubMed  Google Scholar 

  • Jay J (2000) Fermentation and fermented dairy products. In: Jay J (ed) Modern food microbiology. Aspen Food Science Text Series, Springer US, pp 113–130

    Chapter  Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. A Van Leeuw J Microb 49:209–224

    Article  CAS  Google Scholar 

  • Klayraung S, Okonogi S (2009) Antibacterial and antioxidant activities of acid and bile resistant strains of Lactobacillus fermentum isolated from miang. Braz J Microbiol 40:757–766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knight JA, Anderson S, Rawle JM (1972) Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clin Chem 18:199–202

    CAS  PubMed  Google Scholar 

  • Kristmundsdóttir T, Skulason S (2011) Lipids as active ingredients in pharmaceuticals, cosmetics and health foods. In: Thormar H (ed) Lipids and essential oils as antimicrobial agents, 1st edn. John Wiley and Sons Ltd, UK, pp 151–177

    Google Scholar 

  • Lash BW, Mysliwiec TH, Gourama H (2005) Detection and partial characterization of a broad-range bacteriocin produced by Lactobacillus plantarum (ATCC 8014). Food Microbiol 22:199–204

    Article  CAS  Google Scholar 

  • Liong M, Shah N (2005) Production of organic acids from fermentation of mannitol, fructooligosaccharide and inulin by a cholesterol removing Lactobacillus acidophilus strain. J Appl Microbiol 99:783–793

    Article  CAS  PubMed  Google Scholar 

  • McGaw LJ, Jäger AK, van Staden J (2002) Isolation of antibacterial fatty acids from Schotia brachypetala. Fitoterapia 73:431–433

    Article  CAS  PubMed  Google Scholar 

  • Minervini F, Algaron F, Rizzello C, Fox P, Monnet V, Gobbetti M (2003) Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl Environ Microbiol 69:5297–5305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Sullivan L, Ross RP, Hill C (2002) Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604

    Article  PubMed  Google Scholar 

  • Orgaz B, Lobete MM, Puga CH, San Jose C (2011) Effectiveness of chitosan against mature biofilms formed by food related bacteria. Int J Mol Sci 12:817–828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osk Thorgeirsdottir T, Kristmundsdottir T, Thormar H, Axelsdóttir Í, Peter Holbrook W (2006) Antimicrobial activity of monocaprin: a monoglyceride with potential use as a denture disinfectant. Acta Odontol Scand 64:21–26

    Article  CAS  Google Scholar 

  • Patel S, Majumder A, Goyal A (2012) Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol 52:3–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reid G, Burton J, Devillard E (2004) The rationale for probiotics in female urogenital healthcare. Med Gen Med 6:49

    Google Scholar 

  • Remiger A, Eijsink V, Ehrmann M, Sletten K, Nes I, Vogel R (1999) Purification and partial amino acid sequence of plantaricin 1.25ααα and 1.25βββ, two bacteriocins produced by Lactobacillus plantarum TMW1. 25. J Appl Microbiol 86:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues KL, Caputo LRG, Carvalho JCT, Evangelista J, Schneedorf JM (2005) Antimicrobial and healing activity of kefir and kefiran extract. Int J Antimicrob Agric 25:404–408

    Article  CAS  Google Scholar 

  • Ruiz A, Poblet M, Mas A, Guillamon J (2000) Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Inter J Syst Evol Microbiol 50:1981–1987

    Article  CAS  Google Scholar 

  • Schönfeld P, Więckowski MR, Wojtczak L (2000) Long-chain fatty acid-promoted swelling of mitochondria: further evidence for the protonophoric effect of fatty acids in the inner mitochondrial membrane. FEBS Lett 471:108–112

    Article  PubMed  Google Scholar 

  • Shin SY, Bajpai VK, Kim HR, Kang SC (2007) Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. LWT - Food Sci Technol 40:1515–1519

    Article  CAS  Google Scholar 

  • Stowe SD, Richards JJ, Tucker AT, Thompson R, Melander C, Cavanagh J (2011) Anti-biofilm compounds derived from marine sponges. Mar Drugs 9:2010–2035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan P-L, Gan C-Y, Peh K-K, Liong M-T (2013) Bioactive dairy ingredients for food and non-food applications. Acta Aliment Hung 43:113–123

    Article  Google Scholar 

  • Tang J, Zhang R, Chen J, Zhao Y, Tang C, Yue H, Li J, Wang Q, Shi H (2014) Incidence and characterization of Staphylococcus aureus strains isolated from food markets. Ann Microbiol:1–8

  • Thormar H, Hilmarsson H (2007) The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem Phys Lipids 150:1–11

    Article  CAS  PubMed  Google Scholar 

  • Vinderola G, Perdigón G, Duarte J, Farnworth E, Matar C (2006) Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36:254–260

    Article  CAS  PubMed  Google Scholar 

  • Wojtczak L, Więckowski M (1999) The mechanisms of fatty acid-induced proton permeability of the inner mitochondrial membrane. J Bioenerg Biomembr 31:447–455

    Article  CAS  PubMed  Google Scholar 

  • Wu M-H, Pan T-M, Wu Y-J, Chang S-J, Chang M-S, Hu C-Y (2010) Exopolysaccharide activities from probiotic bifidobacterium: Immunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties. Int J Food Microbiol 144:104–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Science Fund Grant (305/PTEKIND/613222) provided by the Malaysian Ministry of Science, Technology, and Innovation (MOSTI), the FRGS grant (203/PTEKIND/6711239) provided by the Malaysian Ministry of Higher Education (MOHE), USM RU grants (1001/PKIMIA/855006, 1001/PTEKIND/815085), and USM Fellowship provided by Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Tze Liong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, CC., Khoo, BY., Sasidharan, S. et al. Activity of crude and fractionated extracts by lactic acid bacteria (LAB) isolated from local dairy, meat, and fermented products against Staphylococcus aureus . Ann Microbiol 65, 1037–1047 (2015). https://doi.org/10.1007/s13213-014-0949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0949-1

Keywords

Navigation