Skip to main content
Log in

Effects of the Use of a Combination of Two Bacillus Species on Performance, Egg Quality, Small Intestinal Mucosal Morphology, and Cecal Microbiota Profile in Aging Laying Hens

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Sixty-week-old Hy-Line brown laying hens were randomly divided into five groups and fed different diets over a period of 84 days. Experimental treatments included a basal diet (control); the basal diet supplemented with 1.0 × 106B. licheniformis yb-214245; the basal diet supplemented with 1.0 × 106B. subtilis yb-114246; a combination of both strains in a 2:1 ratio (6.6 × 105:3.3 × 105B. licheniformis yb-214245:B. subtilis yb-114246); and the latter, added with 5 mg/kg flavomycin. Basal diet supplementation with the combined Bacillus species improved egg-laying performance in aging hens significantly (P < 0.05). Eggshell strength improved significantly with this treatment, compared to the control or the antibiotic-supplemented groups (P < 0.05). The levels of total cholesterol, triglycerides, and very low-density lipoprotein cholesterol in egg yolk declined significantly more in the Bacillus-treated group than in the control or the antibiotic-supplemented groups (P < 0.01). Small intestinal morphology was better in the hens treated with the Bacillus combination than in the hens in the control group (P < 0.05). The total number of aerobic bacteria (Bacillus, Lactobacillus, and Bifidobacterium) in the cecum was significantly higher in all the Bacillus-supplemented hens than either in the control or the antibiotic-supplemented hens (P < 0.01); additionally, the number of E. coli and Salmonella was significantly lower than in the control group (P < 0.01). In conclusion, diet supplementation with the combination of Bacillus species used here for aging laying hens improved their growth performance, cecal bacterial composition, egg quality, and small intestine morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang X, Ryu D, Houtkooper RH, Auwerx J (2015) Antibiotic use and abuse: a threat to mitochondria and chloroplasts with impact on research, health, and environment. Bioessays 37:1045–1053. https://doi.org/10.1002/bies.201500071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 1:506–514. https://doi.org/10.1038/nrgastro.2014.66.

    Article  Google Scholar 

  3. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1158. https://doi.org/10.1126/science.1058709

    Article  CAS  PubMed  Google Scholar 

  4. Setlow P (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Bacteriol 76:49–60. https://doi.org/10.1111/j.1365-2672.1994.tb04357.x.

    Article  Google Scholar 

  5. Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59:410–416. https://doi.org/10.1007/s00018-002-8433-7

    Article  CAS  PubMed  Google Scholar 

  6. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x

    Article  CAS  PubMed  Google Scholar 

  7. Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O (2016) Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med 8:52. https://doi.org/10.1186/s13073-016-0300-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY (2018) Specific properties of probiotic strains: relevance and benefits for the host. EPMA J 9:205–223. https://doi.org/10.1007/s13167-018-0132-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alexopoulos C, Georgoulakis IE, Tzivara A, Kyriakis CS, Govaris A, Kyriakis SC (2004) Field evaluation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance, and carcass quality of grower and finisher pigs. J Vet Med A Physiol Pathol Clin Med 51:306–312. https://doi.org/10.1111/j.1439-0442.2004.00637.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu CH, Chiu CH, Wang SW, Cheng W (2012) Dietary administration of the probiotic Bacillus subtilis E20 enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish Shellfish Immunol 33:699–706. https://doi.org/10.1016/j.fsi.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  11. Jeong JS, Kim IH (2014) Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poultry Sci 93:3097–3103. https://doi.org/10.3382/ps.2014-04086

    Article  CAS  Google Scholar 

  12. Bader J, Albin A, Stahl U (2012) Spore-forming bacteria and their utilization as probiotics. Benefic Microbes 3:67–75. https://doi.org/10.3920/BM2011.0039

    Article  CAS  Google Scholar 

  13. Adorian TJ, Jamali H, Farsani HG, Darvishi P, Hasanpour S, Bagheri T, Roozbehfar R (2018) Effects of probiotic bacteria Bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch). Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-018-9393-z

  14. Moeller R, Setlow P, Reitz G, Nicholson WL (2009) Roles of small, acid-soluble spore proteins and core water content in survival of Bacillus subtilis spores exposed to environmental solar UV radiation. Appl Environ Microbiol 75:5202–5208. https://doi.org/10.1128/AEM.00789-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bai K, Feng C, Jiang L, Zhang L, Zhang J, Zhang L, Wang T (2018) Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poultry Sci 97:2312–2321. https://doi.org/10.3382/ps/pey116

    Article  CAS  Google Scholar 

  16. Vilà B, Fontgibell A, Badiola I, Esteve-Garcia E, Jiménez G, Castillo M, Brufau J (2009) Reduction of Salmonella enterica var. Enteritidis colonization and invasion by Bacillus cereus var. toyoi inclusion in poultry feeds. Poultry Sci 88:975–979. https://doi.org/10.3382/ps.2008-00483

    Article  Google Scholar 

  17. Hatab MH, Elsayed MA, Ibrahim NS (2016) Effect of some biological supplementation on productive performance, physiological and immunological response of layer chicks. J Radiat Res Appl Sci 9:185–192. https://doi.org/10.1016/j.jrras.2015.12.008

    Article  CAS  Google Scholar 

  18. Lei K, Li YL, Yu DY, Rajput IR, Li WF (2013) Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Poultry Sci 92:2389–2395. https://doi.org/10.3382/ps.2012-02686

    Article  CAS  Google Scholar 

  19. Mountzouris KC, Tsitrsikos P, Palamidi I, Arvaniti A, Mohnl M, Schatzmayr G, Fegeros K (2010) Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poultry Sci 89:58–67. https://doi.org/10.3382/ps.2009-00308

    Article  CAS  Google Scholar 

  20. Sharifi SD, Dibamehrb A, Lotfollahian H, Baurhoo B (2012) Effects of flavomycin and probiotic supplementation to diets containing different sources of fat on growth performance, intestinal morphology, apparent metabolizable energy, and fat digestibility in broiler chickens. Poultry Sci 91:918–927. https://doi.org/10.3382/ps.2011-01844

    Article  CAS  Google Scholar 

  21. Ma QG, Gao X, Zhou T, Zhao LH, Fan Y, Li XY, Lei YP, Ji C, Zhang JY (2012) Protective effect of Bacillus subtilis ANSB060 on egg quality, biochemical and histopathological changes in layers exposed to aflatoxin B1. Poultry Sci 91:2852–2857. https://doi.org/10.3382/ps.2012-02474

    Article  CAS  Google Scholar 

  22. Abdelqader A, Al-Fataftah AR, Das G (2013) Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production. Anim Feed Sci Technol 179:103–111. https://doi.org/10.1016/j.anifeedsci.2012.11.003

    Article  CAS  Google Scholar 

  23. Yang JJ, Qian K, Wu D, Zhang W, Wu YJ, Xu YY (2017) Effects of different proportions of two bacillus strains on the growth performance, small intestinal morphology, caecal microbiota and plasma biochemical profile of Chinese Huainan Partridge Shank chickens. J Integr Agric 16:1383–1392. https://doi.org/10.1016/S2095-3119(16)61510-1

    Article  Google Scholar 

  24. Chapman CM, Gibson GR, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50:1–17. https://doi.org/10.1007/s00394-010-0166-z

    Article  CAS  PubMed  Google Scholar 

  25. Zhang JL, Xie QM, Ji J, Yang WH, Wu YB, Li C, Ma JY, Bi YZ (2012) Different combinations of probiotics improve the production performance, egg quality, and immune response of layer hens. Poultry Sci 91:2755–2760. https://doi.org/10.3382/ps.2012-02339

    Article  CAS  Google Scholar 

  26. Forte C, Moscati L, Acuti G, Mugnai C, Franciosini MP, Costarelli S, Cobellis G, Trabalza-Marinucci M (2016) Effects of dietary Lactobacillus acidophilus and Bacillus subtilis on laying performance, egg quality, blood biochemistry and immune response of organic laying hens. J Anim Physiol Anim Nutr (Berl) 100:977–987. https://doi.org/10.1111/jpn.12408

    Article  CAS  Google Scholar 

  27. The National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Food Forum. (2017) Nutrition Across the Lifespan for Healthy Aging: Proceedings of a Workshop. Washington (DC): National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK430985/. Accessed 15 May 2018

  28. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals, Eighth edn. The National Academies Press, Washington DC https://www.nap.edu/catalog/12910/guide-for-the-care-and-use-of-laboratory-animals-eighth. Accessed 15 May 2018

  29. NRC (National Research Council) (1994) Nutrient requirement of poultry, 9th edn. National Academy Press, USA http://www.nap.edu/catalog/2114.html. Accessed 7 March 2017

  30. Mountzouris KC, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K (2007) Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poultry Sci 86:309–317. https://doi.org/10.1093/ps/86.2.309

    Article  CAS  Google Scholar 

  31. Karcher DM, Jones DR, Abdo Z, Zhao Y, Shepherd TA, Xin H (2015) Impact of commercial housing systems and nutrient and energy intake on laying hen performance and egg quality parameters. Poultry Sci 94:485–501. https://doi.org/10.3382/ps/peu078

    Article  CAS  Google Scholar 

  32. Chatzispyrou IA, Held NM, Mouchiroud L, Auwerx J, Houtkooper RH (2015) Tetracycline antibiotics impair mitochondrial function and its experimental use confounds research. Cancer Res 75:4446–4469. https://doi.org/10.1158/0008-5472.CAN-15-1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo JR, Dong XF, Liu S, Tong JM (2017) Effects of long-term Bacillus subtilis CGMCC 1.921 supplementation on performance, egg quality, and fecal and cecal microbiota of laying hens. Poultry Sci 96:1280–1289. https://doi.org/10.3382/ps/pew389

    Article  CAS  Google Scholar 

  34. Al-Shahrani S, Naidoo V (2015) Florfenicol induces early embryonic death in eggs collected from treated hens. BMC Vet Res 11:213. https://doi.org/10.1186/s12917-015-0536-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Louis P, Scott KP, Duncan SH, Flint HJ (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102:1197–1208. https://doi.org/10.1111/j.1365-2672.2007.03322.x

    Article  CAS  PubMed  Google Scholar 

  36. Yang JJ, Qian K, Wang CL, Wu YJ (2018) Roles of probiotic Lactobacilli inclusion in helping piglets establish healthy intestinal inter-environment for pathogen defense. Probiotics Antimicrob Proteins 2:243–250. https://doi.org/10.1007/s12602-017-9273-y

    Article  Google Scholar 

  37. Ooi LG, Liong MT (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11:2499–2522. https://doi.org/10.3390/ijms11062499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xiao JZ, Kondo S, Takahashi N, Miyaji K, Oshida K, Hiramatsu A, Iwatsuki K, Kokubo S, Hosono A (2003) Effects of milk products fermented by Bifdobacterium longum on blood lipids in rats and healthy adult male volunteers. J Dairy Sci 86:2452–2461. https://doi.org/10.3168/jds.S0022-0302(03)73839-9

    Article  CAS  PubMed  Google Scholar 

  39. Giannenas I, Tsalie E, Triantafillou E, Hessenberger S, Teichmann K, Mohnl M, Tontis D (2014) Assessment of probiotics supplementation via feed or water on the growth performance, intestinal morphology and microflora of chickens after experimental infection with Eimeria acervulina, Eimeria maxima and Eimeria tenella. Avian Pathol 43:209–216. https://doi.org/10.1080/03079457.2014.899430

    Article  CAS  PubMed  Google Scholar 

  40. Jiang YB, Yin QQ, Yang YR (2009) Effect of soybean peptides on growth performance, intestinal structure and mucosal immunity of broilers. J Anim Physiol Anim Nutr (Berl) 93:754–760. https://doi.org/10.1111/j.1439-0396.2008.00864.x

    Article  CAS  Google Scholar 

  41. Xu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ (2003) Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult Sci 82:1030–1036. https://doi.org/10.1093/ps/82.6.1030

    Article  CAS  PubMed  Google Scholar 

  42. Mappley LJ, Tchorzewska MA, Cooley WA, Woodward MJ, La Ragione RM (2011) Lactobacilli antagonize the growth, motility, and adherence of Brachyspira pilosicoli: a potential intervention against avian intestinal spirochetosis. Appl Environ Microbiol 77:5402–5411. https://doi.org/10.1128/AEM.00185-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sugiharto S, Isroli I, Yudiarti T, Widiastuti E (2018) The effect of supplementation of multistrain probiotic preparation in combination with vitamins and minerals to the basal diet on the growth performance, carcass traits, and physiological response of broilers. Vet World 11:240–247. https://doi.org/10.14202/vetworld.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ouwehand AC, Invernici MM, Furlaneto FAC, Messora MR (2018) Effectiveness of multistrain versus single-strain probiotics: current status and recommendations for the future. J Clin Gastroenterol 52:S35–S40. https://doi.org/10.1097/MCG.0000000000001052

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the fund of the Natural Science Foundation of Anhui province (No. 1708085QC72), the National System for Layer Production Technology of China (No. CARS-40-K21), and the State Key Laboratory of Animal Nutrition (No.2004D125184f1703). The funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The contribution of the authors was as follows: JY and KZ designed the study; JY isolated and cultured B. licheniformis yb-214245 and B. subtilis yb-114246, fed the hens and recorded the growth data, and wrote the paper; WL measured the egg quality; and MZ was involved in technical direction.

Corresponding authors

Correspondence to Kai Zhan or Minhong Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

The experimental protocols in this study including animal husbandry and slaughter were approved by the Institution of Animal Science and Welfare of Anhui Province (No. IASWAP2017030319).

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhan, K. & Zhang, M. Effects of the Use of a Combination of Two Bacillus Species on Performance, Egg Quality, Small Intestinal Mucosal Morphology, and Cecal Microbiota Profile in Aging Laying Hens. Probiotics & Antimicro. Prot. 12, 204–213 (2020). https://doi.org/10.1007/s12602-019-09532-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09532-x

Keywords

Navigation