Skip to main content
Log in

A Moonlighting Enolase from Lactobacillus gasseri does not Require Enzymatic Activity to Inhibit Neisseria gonorrhoeae Adherence to Epithelial Cells

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Enolases are generally thought of as cytoplasmic enzymes involved in glycolysis and gluconeogenesis. However, several bacteria have active forms of enolase associated with the cell surface and these proteins are utilized for functions other than central metabolism. Recently, a surface-associated protein produced by Lactobacillus gasseri ATCC 33323 with homology to enolase was found to inhibit the adherence of the sexually transmitted pathogen, Neisseria gonorrhoeae, to epithelial cells in culture. Here, we show that the protein is an active enolase in vitro. A recombinantly expressed, C-terminal His-tagged version of the protein, His6-Eno3, inhibited gonococcal adherence. Assays utilizing inhibitors of enolase enzymatic activity showed that this inhibitory activity required the substrate-binding site to be in an open conformation; however, the enolase enzymatic activity of the protein was not necessary for inhibition of gonococcal adherence. An L. gasseri strain carrying an insertional mutation in eno3 was viable, indicating that eno3 is not an essential gene in L. gasseri 33323. This observation, along with the results of the enzyme assays, is consistent with reports that this strain encodes more than one enolase. Here we show that the three L. gasseri genes annotated as encoding an enolase are expressed. The L. gasseri eno3 mutant exhibited reduced, but not abolished, inhibition of gonococcal adherence, which supports the hypothesis that L. gasseri inhibition of gonococcal adherence is a multifactorial process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chhatwal GS (2002) Anchorless adhesins and invasins of Gram-positive bacteria: a new class of virulence factors. Trends Microbiol 10:205–208. doi:10.1016/S0966-842X(02)02351-X

    Article  CAS  Google Scholar 

  2. Kainulainen V, Korhonen T (2014) Dancing to another tune: adhesive moonlighting proteins in bacteria. Biology 3:178–204

    Article  Google Scholar 

  3. Bergmann S, Hammerschmidt S (2006) Versatility of pneumococcal surface proteins. Microbiology 152:295–303. doi:10.1099/mic.0.28610-0

    Article  CAS  Google Scholar 

  4. Glenting J, Beck HC, Vrang A, Riemann H, Ravn P, Hansen AM, Antonsson M, Ahrné S, Israelsen H, Madsen S (2013) Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins. Microbiol Res 168:245–253. doi:10.1016/j.micres.2013.01.003

    Article  CAS  Google Scholar 

  5. Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79:3476–3491. doi:10.1128/iai.00179-11

    Article  CAS  Google Scholar 

  6. Huberts DHEW, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 1803:520–525. doi:10.1016/j.bbamcr.2010.01.022

    Article  CAS  Google Scholar 

  7. Schaumburg J, Diekmann O, Hagendorff P, Bergmann S, Rohde M, Hammerschmidt S, Jänsch L, Wehland J, Kärst U (2004) The cell wall subproteome of Listeria monocytogenes. Proteomics 4:2991–3006. doi:10.1002/pmic.200400928

    Article  CAS  Google Scholar 

  8. Agarwal S, Kulshreshtha P, Bambah Mukku D, Bhatnagar R (2008) α-Enolase binds to human plasminogen on the surface of Bacillus anthracis. Biochim Biophys Acta 1784:986–994. doi:10.1016/j.bbapap.2008.03.017

    Article  CAS  Google Scholar 

  9. Antikainen J, Kuparinen V, Lähteenmäki K, Korhonen TK (2007) Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. FEMS Immunol Med Microbiol 51:526–534. doi:10.1111/j.1574-695X.2007.00330.x

    Article  CAS  Google Scholar 

  10. Knaust A, Weber MVR, Hammerschmidt S, Bergmann S, Frosch M, Kurzai O (2007) Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J Bacteriol 189:3246–3255. doi:10.1128/jb.01966-06

    Article  CAS  Google Scholar 

  11. Pancholi V, Fischetti VA (1998) Alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273:14503–14515

    Article  CAS  Google Scholar 

  12. Sha J, Erova TE, Alyea RA, Wang S, Olano JP, Pancholi V, Chopra AK (2009) Surface-expressed enolase contributes to the pathogenesis of clinical isolate SSU of Aeromonas hydrophila. J Bacteriol 191:3095–3107. doi:10.1128/jb.00005-09

    Article  CAS  Google Scholar 

  13. Donofrio FC, Calil ACA, Miranda ET, Almeida AMF, Benard G, Soares CP, Veloso SN, Soares CMdA, Mendes Giannini MJS (2009) Enolase from Paracoccidioides brasiliensis: isolation and identification as a fibronectin-binding protein. J Med Microbiol 58:706–713. doi:10.1099/jmm.0.003830-0

    Article  CAS  Google Scholar 

  14. Jolodar A, Fischer P, Bergmann S, Büttner DW, Hammerschmidt S, Brattig NW (2003) Molecular cloning of an α-enolase from the human filarial parasite Onchocerca volvulus that binds human plasminogen. Biochim Biophys Acta 1627:111–120. doi:10.1016/S0167-4781(03)00083-6

    Article  CAS  Google Scholar 

  15. Mundodi V, Kucknoor AS, Alderete JF (2008) Immunogenic and plasminogen-binding surface-associated alpha-enolase of Trichomonas vaginalis. Infect Immun 76:523–531. doi:10.1128/IAI.01352-07

    Article  CAS  Google Scholar 

  16. Bergmann S, Rohde M, Preissner KT, Hammerschmidt S (2005) The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost 94:304–311. doi:10.1160/th05-05-0369

    CAS  Google Scholar 

  17. Lähteenmäki K, Edelman S, Korhonen TK (2005) Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 13:79–85. doi:10.1016/j.tim.2004.12.003

    Article  Google Scholar 

  18. Lähteenmäki K, Kuusela P, Korhonen TK (2000) Plasminogen activation in degradation and penetration of extracellular matrices and basement membranes by invasive bacteria. Methods 21:125–132. doi:10.1006/meth.2000.0983

    Article  Google Scholar 

  19. Hurmalainen V, Edelman S, Antikainen J, Baumann M, Lähteenmäki K, Korhonen TK (2007) Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology 153:1112–1122. doi:10.1099/mic.0.2006/000901-0

    Article  CAS  Google Scholar 

  20. Castaldo C, Vastano V, Siciliano R, Candela M, Vici M, Muscariello L, Marasco R, Sacco M (2009) Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microb Cell Fact 8:14

    Article  Google Scholar 

  21. Spurbeck RR, Arvidson CG (2008) Inhibition of Neisseria gonorrhoeae epithelial cell interactions by vaginal Lactobacillus species. Infect Immun 76:3124–3130. doi:10.1128/iai.00101-08 Author’s correction Infect Immun 80:3742. doi:10.1128/IAI.00788-12

  22. Spurbeck RR, Arvidson CG (2010) Lactobacillus jensenii surface associated proteins inhibit Neisseria gonorrhoeae adherence to epithelial cells. Infect Immun 78:3103–3111. doi:10.1128/IAI.01200-09 Author’s correction Infect Immun 80:3743. doi:10.1128/IAI.00789-12

  23. Segal E, Billyard E, So M, Storzbach S, Meyer TF (1985) Role of chromosomal rearrangement in N. gonorrhoeae pilus phase variation. Cell 40:293–300

    Article  CAS  Google Scholar 

  24. Kellogg DS, Peacock WL, Deacon WE, Brown L, Pirkle CI (1963) Neisseria gonorrhoeae I.: virulence genetically linked to clonal variation. J Bacteriol 85:1274–1279

    Google Scholar 

  25. Whitehead K, Versalovic J, Roos S, Britton RA (2008) Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 74:1812–1819. doi:10.1128/AEM.02259-07

    Article  CAS  Google Scholar 

  26. Papagianni M, Avramidis N, Filioussis G (2007) High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol. BMC Biotechnol 7:15. doi:10.1186/1472-6750-7-15

    Article  Google Scholar 

  27. Makarova K, Slesarev A, Wolf Y et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci 103:15611–15616. doi:10.1073/pnas.0607117103

    Article  Google Scholar 

  28. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet A-C, Zwahlen M-C, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci 101:2512–2517. doi:10.1073/pnas.0307327101

    Article  CAS  Google Scholar 

  29. Lebioda L, Zhang E, Lewinski K, Brewer JM (1993) Fluoride inhibition of yeast enolase: crystal structure of the enolase-Mg(2+)-F(-)-P i complex at 2.6 A resolution. Proteins 16:219–225

    Article  CAS  Google Scholar 

  30. Lebioda L, Stec B, Brewer JM, Tykarska E (1991) Inhibition of enolase: the crystal structures of enolase-Ca2(+)-2-phosphoglycerate and enolase-Zn2(+)-phosphoglycolate complexes at 2.2-A resolution. Biochemistry 30:2823–2827

    Article  CAS  Google Scholar 

  31. Babbitt PC, Hasson MS, Wedekind JE, Palmer DRJ, Barrett WC, Reed GH, Rayment I, Ringe D, Kenyon GL, Gerlt JA (1996) The enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the α-protons of carboxylic acids. Biochemistry 35:16489–16501. doi:10.1021/bi9616413

    Article  CAS  Google Scholar 

  32. Candela M, Biagi E, Centanni M, Turroni S, Vici M, Musiani F, Vitali B, Bergmann S, Hammerschmidt S, Brigidi P (2009) Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology 155:3294–3303. doi:10.1099/mic.0.028795-0

    Article  CAS  Google Scholar 

  33. Lopez-Alemany R, Suelves M, Diaz-Ramos A, Vidal B, Munoz-Canoves P (2005) Alpha-enolase plasminogen receptor in myogenesis. Front Biosci 10:30–36

    Article  CAS  Google Scholar 

  34. Wilson M (2005) Microbial inhabitants of humans: their ecology and role in health and disease. The Press Syndicate of the University of Cambridge, Cambridge

    Google Scholar 

  35. Sanchez B, Schmitter JM, Urdaci MC (2009) Identification of novel proteins secreted by Lactobacillus plantarum that bind to mucin and fibronectin. J Mol Microbiol Biotechnol 17:158–162. doi:10.1159/000233579

    Article  CAS  Google Scholar 

  36. Owen DH, Katz DF (1999) A vaginal fluid simulant. Contraception 59:91–95

    Article  CAS  Google Scholar 

  37. Wagner G, Levin RJ (1980) Electrolytes in vaginal fluid during the menstrual cycle of coitally active and inactive women. J Reprod Fertil 60:17–27

    Article  CAS  Google Scholar 

  38. Tunio SA, Oldfield NJ, Berry A, Ala’aldeen DA, Wooldridge KG, Turner DP (2010) The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Mol Microbiol 76:605–615. doi:10.1111/j.1365-2958.2010.07098.x

    Article  CAS  Google Scholar 

  39. Antikainen J, Kupannen V, Lähteenmäki K, Korhonen TK (2007) pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol 189:4539–4543. doi:10.1128/jb.00378-07

    Article  CAS  Google Scholar 

  40. Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S (2001) α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287. doi:10.1046/j.1365-2958.2001.02448.x

    Article  CAS  Google Scholar 

  41. Esgleas M, Li Y, Hancock MA, Harel J, Dubreuil JD, Gottschalk M (2008) Isolation and characterization of α-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology 154:2668–2679. doi:10.1099/mic.0.2008/017145-0

    Article  CAS  Google Scholar 

  42. Burnham C-AD, Shokoples SE, Tyrrell GJ (2005) Phosphoglycerate kinase inhibits epithelial cell invasion by group B streptococci. Microb Pathog 38:189–200. doi:10.1016/j.micpath.2005.02.002

    Article  CAS  Google Scholar 

  43. Alvarez RA, Blaylock MW, Baseman JB (2003) Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol Microbiol 48:1417–1425. doi:10.1046/j.1365-2958.2003.03518.x

    Article  CAS  Google Scholar 

  44. Egea L, Aguilera L, Giménez R, Sorolla MA, Aguilar J, Badía J, Baldoma L (2007) Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int J Biochem Cell Biol 39:1190–1203. doi:10.1016/j.biocel.2007.03.008

    Article  CAS  Google Scholar 

  45. Kinoshita H, Wakahara N, Watanabe M, Kawasaki T, Matsuo H, Kawai Y, Kitazawa H, Ohnuma S, Miura K, Horii A, Saito T (2008) Cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Lactobacillus plantarum LA 318 recognizes human A and B blood group antigens. Res Microbiol 159:685–691. doi:10.1016/j.resmic.2008.07.005

    Article  CAS  Google Scholar 

  46. Madureira P, Baptista M, Vieira M, Magalhães V, Camelo A, Oliveira L, Ribeiro A, Tavares D, Trieu-Cuot P, Vilanova M, Ferreira P (2007) Streptococcus agalactiae GAPDH is a virulence-associated immunomodulatory protein. J Immunol 178:1379–1387. doi:10.4049/jimmunol.178.3.1379

    Article  CAS  Google Scholar 

  47. Modun B, Morrissey J, Williams P (2000) The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol 8:231–237. doi:10.1016/S0966-842X(00)01728-5

    Article  CAS  Google Scholar 

  48. Terao Y, Yamaguchi M, Hamada S, Kawabata S (2006) Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem 281:14215–14223. doi:10.1074/jbc.M513408200

    Article  CAS  Google Scholar 

  49. Seidler N (2013) Multiple binding partners. In: GAPDH: biological properties and diversity. Advances in Experimental Medicine and Biology. Springer, Netherlands, pp 249–267. doi:10.1007/978-94-007-4716-6_8

  50. McGee ZA, Johnson AP, Taylor-Robinson D (1981) Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human Fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J Infect Dis 143:413–422

    Article  CAS  Google Scholar 

  51. Merz AJ, Rifenbery DB, Arvidson CG, So M (1996) Traversal of a polarized epithelium by pathogenic Neisseriae: facilitation by type IV pili and maintenance of epithelial barrier function. Mol Med 2:745–754

    CAS  Google Scholar 

  52. Swanson J (1973) Studies on gonococcus infection. IV. Pili: their role in attachment of gonococci to tissue culture cells. J Exp Med 137:571–589

    Article  CAS  Google Scholar 

  53. Harris PT, Raghunathan K, Spurbeck RR, Arvidson CG, Arvidson DN (2010) Expression, purification, crystallization and preliminary X-ray studies of Lactobacillus jensenii enolase. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:938–940. doi:10.1107/S1744309110022748 Addenda and Errata (2013) Acta Crystallogr Sect F Struct Biol Cryst Commun 69:1070

  54. Raghunathan K, Harris PT, Spurbeck RR, Arvidson CG, Arvidson DN (2014) Crystal structure of an efficacious gonococcal adherence inhibitor: an enolase from Lactobacillus gasseri. FEBS Lett 588:2212–2216. doi:10.1016/j.febslet.2014.05.020

    Article  CAS  Google Scholar 

  55. Navarro MVdAS, Gomes Dias SM, Mello LV, da Silva Giotto MT, Gavalda S, Blonski C, Garratt RC, Rigden DJ (2007) Structural flexibility in Trypanosoma brucei enolase revealed by X-ray crystallography and molecular dynamics. FEBS J 274:5077–5089. doi:10.1111/j.1742-4658.2007.06027.x

    Article  CAS  Google Scholar 

  56. Wedekind JE, Poyner RR, Reed GH, Rayment I (1994) Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution. Biochemistry 33:9333–9342

    Article  CAS  Google Scholar 

  57. Sims PA, Menefee AL, Larsen TM, Mansoorabadi SO, Reed GH (2006) Structure and catalytic properties of an engineered heterodimer of enolase composed of one active and one inactive subunit. J Mol Biol 355:422–431. doi:10.1016/j.jmb.2005.10.050

    Article  CAS  Google Scholar 

  58. Bolan GA, Sparling PF, Wasserheit JN (2012) The emerging threat of untreatable gonococcal infection. N Engl J Med 366:485–487

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Robert Britton for providing the plasmids pORI19 and pVE6007 for the insertional mutagenesis system, and for his advice on mutagenesis in lactobacilli. We would also like to thank Dr. Lin Tao for providing protocols and advice for electroporation of L. gasseri. Finally, we would like to thank Dr. Eric Carter for his advice on enzyme kinetics and Dr. Robert Hausinger for critical reading of the manuscript.

Conflict of interest

R. R. Spurbeck, P. T. Harris, K. Raghunathan, D. N. Arvidson, and C. G. Arvidson declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Grove Arvidson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spurbeck, R.R., Harris, P.T., Raghunathan, K. et al. A Moonlighting Enolase from Lactobacillus gasseri does not Require Enzymatic Activity to Inhibit Neisseria gonorrhoeae Adherence to Epithelial Cells. Probiotics & Antimicro. Prot. 7, 193–202 (2015). https://doi.org/10.1007/s12602-015-9192-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-015-9192-8

Keywords

Navigation