Skip to main content

Advertisement

Log in

Tolerance of soybean genotypes to Euschistus heros (Fabricius) (Hemiptera: Pentatomidae)

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The neotropical brown stink bug, Euschistus heros (Fabricius) (Hemiptera: Pentatomidae) one of the most harmful and abundant insect pests of soybean crops—feeds from pod formation until the end of seed development, drastically reducing crop productivity. This study aimed to evaluate the response of soybean genotypes to different patterns of E. heros infestation, to characterize tolerance, and to investigate the physiological mechanisms involved. A tolerance test was performed in a greenhouse with the soybean genotypes ‘Conquista’, ‘IAC-100’, ‘TMG 7062 IPRO’, and ‘KS-4202’. Genotypes were physically isolated and various infestation patterns applied, using three stink bugs per plant. A simultaneous greenhouse experiment was performed to correlate the enzyme activity of superoxide dismutase, peroxidase, polyphenol oxidase, and catalase with genotype performance across the various levels of infestation. Finally, a field experiment was conducted with the same genotypes; plants were isolated and stink bugs applied at different phenological phases (7-day infestation beginning in R3, R5, and R7; and R3 until harvest). In the two greenhouse trials, the genotypes ‘IAC-100’ and ‘Conquista’ expressed tolerance to E. heros, suggesting an association with greater peroxidase activity. In the field, the ‘IAC-100’ genotype exhibited tolerance toward E. heros, showing high resistance when infested in the R5 and R7 phenological phases. The ‘TMG 7062’ genotype showed promising results infested with stink bugs in the R7 phase, under field conditions.The greenhouse and field results confirm the tolerance of ‘IAC-100’ to E. heros and indicate that oxidative enzymes may be related to the genotype’s physiological response when infested with this stink bug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  • Baldin, E. L. L., Stamm, M. S., Bentivenha, J. P. F., Koch, K. G., Heng-Moss, T. M., & Hunt, T. E. (2018). Feeding behavior of Aphis glycines (Hemiptera: Aphididae) on soybeans exhibiting antibiosis, antixenosis, and tolerance resistance. Florida Entomologist, 101, 223–228. https://doi.org/10.1653/024.101.0211

    Article  Google Scholar 

  • Baldin, E. L. L., Vendramin, J. D., & Lourenção, A. L. (2019). Resistência de plantas a insetos: fundamentos e aplicações. FEALQ.

    Google Scholar 

  • Belo, M. S. S. P., Pignati, W., Dores, E. F. G. C., Moreira, C. J., & Peres, F. (2012). Pesticide use in soybean production in Mato Grosso state, Brazil: a preliminary occupational and environmental risk characterization. Revista Brasileira de Saúde Ocupacional, 37, 78–88. https://doi.org/10.1590/S0303-76572012000100011

    Article  Google Scholar 

  • Bertolin, D. C., Sá, M. E., Arf, O., Unior, E. F., Colombo, A. S., & Carvalho, F. L. B. M. (2010). Increase of the productivity of the soybean crop with the application of biostimulants. Bragantia, 69, 339–347. https://doi.org/10.1590/S0006-87052010000200011

    Article  CAS  Google Scholar 

  • Boguszewska, D., & Zagdańska. (2012). ROS as signaling molecules and enzymes of plant response to unfavorable environmental conditions in oxidative stress–molecular mechanisms and biological effects. In V. Lushchak (Ed.). Semchyschyn H Intech.

  • Bostock, R. M., & Stermer, B. A. (1989). Perspectives on wound healing in resistance to pathogens. Annual Review of Phytopathology, 27, 343–371. https://doi.org/10.1146/annurev.py.27.090189.002015

    Article  Google Scholar 

  • Bradford, M. A. (1976). A rapid and sensitive method for the quantitation of microgram quanties of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Bueno, A. F., Bortolotto, O. C., Pomari-Fernandes, A., & França-Neto, J. B. (2015). Assessment of a more conservative stink bug economic threshold for managing stink bugs in Brazilian soybean production. Crop Protection, 71, 132–137. https://doi.org/10.1016/j.cropro.2015.02.012

    Article  Google Scholar 

  • Campos, M., Knutson, A., Heitholt, J., & Campos, C. (2010). Resistance to seed feeding by southern green stink bug, Nezara viridula (Linnaeus), in soybean, Glycine max (L.) Merrill. Southwestern Entomologist, 35, 233–239. https://doi.org/10.3958/059.035.0302

    Article  Google Scholar 

  • Canassa, V. F., Baldin, E. L. L., Bentivenha, J. P. F., Panutti, L. E. R., & Lourenção, A. L. (2017). Resistance to Dichelops melacanthus (Hemiptera: Pentatomidae) in soybean genotypes of different maturity groups. Bragantia, 76, 257–265. https://doi.org/10.1590/1678-4499.068

    Article  Google Scholar 

  • Conab-Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Grãos, maio/2021 .(2021). Retrieved: 18 mai. from https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos

  • Corrêa-Ferreira, B. S., & Panizzi, A. R. (1999). Percevejos da soja e seu manejo. Embrapa Soja, 1, 42.

    Google Scholar 

  • Corrêa-Ferreira, B. S., Krzyzanowski, F. C., & Minami, C. A. (2009). Percevejos e a qualidade da semente de soja: Série Sementes. Embrapa Soja. Circular técnica, 67, 15.

  • Cruz, P. L., Baldin, E. L. L., Guimarães, L. R. P., Pannuti, L. E. R., Lima, G. P. P. L., Heng-Moss, T., & Hunt, T. E. (2016). Tolerance of KS-4202 soybean to the attack of Bemisia tabaci biotype B (Hemiptera: Aleyrodidae). Florida Entomologist, 99, 601–607. https://doi.org/10.1653/024.099.0403

    Article  Google Scholar 

  • Depieri, R. A., & Panizzi, A. R. (2011). Duration of feeding and superficial and in-depth damage to soybean seed by selected species of stink bugs (Heteroptera: Pentatomidae). Neotropical Entomology, 40, 197–203. https://doi.org/10.1590/S1519-566X2011000200007

    Article  CAS  PubMed  Google Scholar 

  • Desneux, N., Deucourtye, A., & Delpuech, J. M. (2007). The subletal effects of pesticides on beneficial arthropods. Annual Review Entomology, 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440

    Article  CAS  Google Scholar 

  • Durak, R., Dampca, J., & Dampcb, J. (2020). Role of temperature on the interaction between Japanese quince Chaenomeles japonica and herbivorous insect Aphis pomi (Hemiptera: Aphidoidea). Environmental and Experimental Botany, 17, 104–100. https://doi.org/10.1016/j.envexpbot.2020.104100

  • Fehr, W. R., & Caviness, C. E. (1977). Stages of soybean development. Iowa State University Cooperative Extension Service Special Report 80. Iowa State University.

    Google Scholar 

  • Fernandes, F. M., Athayde, M. L. F., & Lara, F. M. (1994). Comportamento de cultivares de soja no campo em relação ao ataque de percevejos. Pesquisa Agropecuária Brasileira, 29, 363–367. https://doi.org/10.1590/S0100-204X2000000500003

    Article  Google Scholar 

  • Franzen, L. D., Gutsche, A. R., Heng-Moss, T. M., Higley, L. G., Sarath, G., & Burd, J. D. (2007). Physiological and biochemical responses of resistant and susceptible wheat to injury by Russian wheat aphid. Journal of Economic Entomology, 100, 1692–1703. https://doi.org/10.1093/jee/100.5.1692

    Article  CAS  PubMed  Google Scholar 

  • Heng-Moss, T., Sarath, G., Baxendale, F. P., Novak, D., Bose, S., Ni, X., & Quisenberry, S. (2004). Characterization of oxidative enzyme changes in buffalograsses challenged by Blissus occiduus Journal of Economic Entomology, 97, 1086–1095. https://doi.org/10.1093/jee/97.3.1086

    Article  CAS  PubMed  Google Scholar 

  • Higley, L. G., & Boethel, D. J. (1994). Soybean insect pests. In L. G. Higley (Ed.), Soybean pest management procedures. Entomological Society of America.

  • Kar, M., & Mishra, D. (1976). Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57, 315–319. https://doi.org/10.1104/pp.57.2.315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima, G. P. P., Brasil, O. G., & Oliveira, A. M. (1999). Poliaminas e atividade da peroxidase em feijão (Phaseolus vulgaris L.) cultivado sob estresse salino. Scientia Agricola, 56, 21–25. https://doi.org/10.1590/S0103-90161999000100004

    Article  CAS  Google Scholar 

  • Marchi-Werle, L., Heng-Moss, T. M., Hunt, T. E., Baldin, E. L. L., & Baird, L. M. (2014). Characterization of peroxidase changes in tolerant and susceptible soybeans challenged by soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology, 107, 195–199. https://doi.org/10.1603/EC14220

    Article  Google Scholar 

  • Marchi-Werle, L., Baldin, E. L. L., Fischer, H. D., Heng-Moss, T. M., & Hunt, T. E. (2017). Economic injury levels for Aphis glycines Matsumura (Hemiptera: Aphididae) on the soybean aphid tolerant KS4202 soybean. Journal of Economic Entomology, 110, 1–9. https://doi.org/10.1093/jee/tox225

    Article  Google Scholar 

  • Mcpherson, R. M., Buss, G. R., & Roberts, P. M. (2007). Assessing stink bug resistance in soybean breeding lines containing genes from germplasm IAC 100. Journal of Economic Entomology, 100, 1456–1463. https://doi.org/10.1093/jee/100.4.1456

    Article  PubMed  Google Scholar 

  • Minitab, I. (2010). Minitab 16 statistical software. PA Minitab, Inc, State Coll. URL [Computer software]. Retrieved: 15 mai. from www.minitab.com

  • Nandwal, A. S., Maan, A., Kundu, B. S., Sheokand, S., Kamboj, D. V., Sheoran, A., Kumar, B., & Dutta, D. (2000). Ethylene evolution and antioxidant defence mechanism in Cicer arietinum roots in the presence of nitrate and aminoethoxyviylglycine. Plant Physiology Biochemistry, 38, 709–715. https://doi.org/10.1016/S0981-9428(00)01174-8

    Article  CAS  Google Scholar 

  • Painter, R. H. (1951). Insect resistance in crop plants. McMillan.

  • Panda, N., & Khush, G. S. (1995). Host plant resistance to insects. CABI.

  • Panizzi, A. R., Bueno, A. F., & Silva, F. A. C. (2012). Soja: manejo integrado de insetos e outros artrópodes-praga, 5, 335–420.

  • Pierson, L. M., Heng-Moss, T. M., Hunt, T. E., & Reese, J. C. (2010). Categorizing the resistance of soybean genotypes to the soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology, 103, 1405–1411. https://doi.org/10.1603/EC09324

    Article  CAS  PubMed  Google Scholar 

  • Pierson, L. M., Heng-Moss, T. M., Hunt, T. E., & Reese, J. (2011). Physiological responses of resistant and susceptible reproductive stage soybean to soybean aphid (Aphis glycines Matsumura) feeding. Arthropod–Plant Interactions, 5, 49–58. https://doi.org/10.1007/s11829-010-9115-2

    Article  Google Scholar 

  • Pinheiro, J. B., Vendramim, J. D., & Lourenção, A. L. (2016). Programas geram cultivares de soja resistentes a insetos. Visão Agrícola, 5, 56–59.

    Google Scholar 

  • Prochaska, T. J., Pierson, L. M., Baldin, E. L. L., Hunt, T. E., Heng-Moss, T. M., & Reese, J. C. (2013). Evaluation of late vegetative and reproductive stage soybeans for resistance to soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology, 106, 1036–1044. https://doi.org/10.1603/EC12320

    Article  CAS  PubMed  Google Scholar 

  • Raij, B., Cantarella, H., & Quaggio, J. (1997). Recomendações de adubação e calagem para o Estado de São Paulo. Fundação IAC.

    Google Scholar 

  • Ribeiro, F. C. F. S., Rocha, F. S., Erasmo, E. A. L., Matos, E. P., & Costa, S. J. (2016). Management with insecticides targeting the brown stink bug control in intact soybean crop. Journal of Neotropical Agriculture, 3, 48–53.

    Article  Google Scholar 

  • Rossetto, C. J., Gallo, P. B., Razera, L. F., Bortoletto, N., Igue, T., Medina, P. F., Tisseli, O. F., Aquilera, V., Veiga, R. F. A., & Pinheiro, J. B. (1995). Mechanisms of resistance to stink bug complex in the soybean cultivar IAC-100. Anais da Sociedade Entomológica do Brasil, 24, 517–522. https://doi.org/10.37486/0301-8059.v24i3.1061

    Article  Google Scholar 

  • Sabljic, I., Barneto, J. A., Balestrasse, K. B., Zavala, J. A., & Pagano, E. A. (2020). Role of reactive oxygen species and isoflavonoids in soybean resistance to the attack of the southern green stink bug. PeerJ, 8, 1–18. https://doi.org/10.7717/peerj.9956

    Article  CAS  Google Scholar 

  • Savatin, D. V., Gramegna, G., Modesti, V., & Cervone, F. (2014). Wounding in the plant tissue: the defense of a dangerous passage. Frontiers in Plant Science, 5, 1–11. https://doi.org/10.3389/fpls.2014.00470

    Article  Google Scholar 

  • Scopel, W., Salvadori, J. R., Panizzi, A. R., & Pereira, P. R. V. S. (2016). Danos de Euschistus heros (F.) (Hemiptera: Pentatomidae) em soja infestada no estádio de grão cheio. Agropecuária Catarinense, 29, 81–84.

    Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). Analysis of variance test for normality (complete sample). Biometrika, 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591

    Article  Google Scholar 

  • Silva, J. P. G. F., Baldin, E. L. L., Souza, E. S., Canassa, V. F., & Lourenção, A. L. (2013). Characterization of antibiosis to the redbanded stink bug Piezodorus guildinii (Hemiptera: Pentatomidae) in soybean entries. Journal of Pest Science, 86, 649–657. https://doi.org/10.1007/s10340-013-0527-5

    Article  Google Scholar 

  • Smith, C. M. (2005). Plant resistance to arthropods. Springer Science.

    Book  Google Scholar 

  • Sosa-Gómez, D. R., & Moscardi, F. (1995). Retenção foliar diferencial em soja provocada por percevejos (Heteroptera: Pentatomidae). Anais da Sociedade Entomológica do Brasil, 24, 414–404. https://doi.org/10.37486/0301-8059.v24i2.1042

    Article  Google Scholar 

  • Sosa-Gómez, D. R., & Silva, J. J. (2010). Neotropical brown stink bug (Euschistus heros) resistance to methamidophos in Paraná, Brazil. Pesquisa Agropecuária Brasileira, 45, 767–769. https://doi.org/10.1590/S0100-204X2010000700019

    Article  Google Scholar 

  • Sosa-Gómez, D. R., & Omoto, C. (2012). Resistência a inseticidas e outros agentes de controle em artrópodes associados à cultura da soja. In C. B. Hoffmann-Campo, B. S. Corrêa Ferreira, & F. Moscardi (Eds.), Soja: manejo integrado de insetos e outros artrópodes-praga (pp. 675–723). Embrapa.

    Google Scholar 

  • Sosa-Gómez, D. R., Corso, I. C., & Morales, L. (2001). Insecticide resistance to endosulfan, monocrotophos and metamidophos in the Neotropical brown stink bug, Euschistus heros (F.). Neotropical Entomology, 30, 317–320. https://doi.org/10.1590/S1519-566X2001000200017

    Article  Google Scholar 

  • Sosa-Gómez, D. R., Corrêa-Ferreira, B. S., Kraemer, B., Pasini, A., Husch, P. E., Vieira, C. E. D., Martinez, D. C. B. R., & Lopes, I. O. (2019). Prevalence, damage, management and insecticide resistance of stink bug populations (Hemiptera: Pentatomidae) in commodity crops. Agricultural and Forest Entomology, 22, 99–118. https://doi.org/10.1111/afe.12366

    Article  Google Scholar 

  • Souza, E. S., Baldin, E. L. L., Silva, J. P. G. F., & Lourenção, A. L. (2013). Feeding preference of Nezara viridula (Hemiptera: Pentatomidae) and attractiveness of soybean genotypes. Chilean Journal of Agricultural Research, 73, 351–357. https://doi.org/10.4067/S0718-58392013000400004

    Article  Google Scholar 

  • Souza, E. S., Silva, J. P. G. F., Baldin, E. L. L., Pierozzi, C. G., Cunha, L. S., Canassa, V. F., Pannuti, L. E. R., & Lourenção, A. L. (2016). Response of soybean genotypes challenged by a stink bug complex (Hemiptera: Pentatomidae). Journal of Economic Entomology, 109, 898–906. https://doi.org/10.1093/jee/tov341

    Article  CAS  PubMed  Google Scholar 

  • Stinchcombe, J. R. (2002). Can tolerance traits impose selection on herbivores? Evolutionary Ecology, 15, 595–602. https://doi.org/10.1023/A:1021617418037

    Article  Google Scholar 

  • Strauss, S. Y., & Agrawal, A. A. (1999). The ecology and evolution of plant tolerance to herbivory. Trends in Ecology & Evolution, 14, 179–185. https://doi.org/10.1016/s0169-5347(98)01576-6

    Article  CAS  Google Scholar 

  • Sun, Y., Larry, W., Oberley, & Ying, L. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34, 497–500. https://doi.org/10.1093/CLINCHEM/34.3.497

    Article  CAS  PubMed  Google Scholar 

  • Taggar, G. K., Gill, R. S., Gupta, A. K., & Sandhu, J. S. (2012). Fluctuations in peroxidase and catalase activities of resistant and susceptible black gram (Vigna mungo (L.) Hepper) genotypes elicited by Bemisia tabaci (Gennadius) feeding. Plant Signaling Behavior, 7, 1321–1329. https://doi.org/10.4161/psb.21435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuelher, E. S., Silva, E., Rodrigues, H., Hirose, E., Guedes, R., & Oliveira, E. (2018). Area-wide spatial survey of the likelihood of insecticide control failure in the neotropical brown stink bug Euschistus heros. Journal of Pest Science, 91, 849–859. https://doi.org/10.1007/s10340-017-0949-6

  • Wang, X., Zhou, L., Xu, B., & Xu, G. (2014). Seasonal occurrence of Aphis glycines and physiological responses of soybean plants to its feeding. Insect Scince, 21, 342–351. https://doi.org/10.1111/1744-7917.12099

    Article  CAS  Google Scholar 

  • War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling Behavior, 7, 1306–1320. https://doi.org/10.4161/psb.21663

    Article  PubMed  PubMed Central  Google Scholar 

  • Zebelo, S. A., & Maffei, M. E. (2014). Role of early signalling events in plant–insect interactions. Journal of Experimental Botany, 66, 435–448. https://doi.org/10.1093/jxb/eru480

  • Zhang, K., Di, N., Ridsdill-Smith, J., Zhang, B., Tan, X., Cao, H., Liu, Y., & Liu, T. (2014). Does a multi-plant diet benefit a polyphagous herbivore? A case study with Bemisia tabaci Entomologia Experimentalis et Applicata, 152, 148–156. https://doi.org/10.1111/eea.12210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council for Scientific and Technological Development - Brazil (CNPq) [431398/2018–6 and 305991/2020–5] and by the Coordination of Improvement of Higher Education Personnel - Brazil (CAPES) - Finance Code 001. This study is part of a M.Sc. dissertation of Vinicius Suarez Victor.

Author information

Authors and Affiliations

Authors

Contributions

VSV, ELLB, and ALL conceived the study. VSV, WD and GCM conducted the experiments. ELLB and ALL contributed the material. MMPS analyzed the data and conducted the statistical analyses. VSV, TLBS, and ELLB wrote the manuscript. All authors reviewed the MS and approved the manuscript.

Corresponding author

Correspondence to Thais L. B. Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Victor, V.S., Dias, W., Santos, T.L.B. et al. Tolerance of soybean genotypes to Euschistus heros (Fabricius) (Hemiptera: Pentatomidae). Phytoparasitica 50, 1011–1023 (2022). https://doi.org/10.1007/s12600-022-01024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-022-01024-z

Keywords

Navigation