Skip to main content
Log in

Bacterial endophytes from Chukrasia tabularis can antagonize Hypsipyla robusta larvae

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Damage by the shoot-tip borer Hypsipyla robusta (Lepidoptera: Pyralidae) has limited the commercial cultivation of Chukrasia tabularis (Meliaceae) in many parts of the world. Recently, a number of C. tabularis families in Vietnam have shown field resistance to H. robusta. This study explores whether endophytic bacteria in C. tabularis can inhibit the development of H. robusta. Endophytic bacteria from resistant trees had strong repellent (73–97%) and antifeedant (74–84%) activity with H. robusta in laboratory trials. The most biologically active isolates were identified as Bacillus bombysepticus (4 isolates) and Bacillus velezensis (2 isolates) based on phylogenetic analysis of 16S rRNA, gyrB, pycA and rpoB. Fifteen days after releasing H. robusta larvae in a nursery trial, spray inoculation with bacterial solutions from resistant trees reduced shoot tip damage by over 60% compared with the control. Spray treatments with bacterial endophytes from susceptible trees were less effective. These findings have application to the future development of biological control of H. robusta, and the selection of resistant trees for breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267.

    Article  CAS  Google Scholar 

  • Adelskov J., Patel B. K. C. (2014). Draft genome sequence of Bacillus subtilis strain D7XPN1, isolated from commercial bioreactor-degrading food Waste. Genome Announcements, 2(5), e00989–00914. https://journals.asm.org/doi/abs/10.1128/genomeA.00989-14

  • Bacon C. W., Palencia E. R., Hinton D. M. (2015). Abiotic and biotic plant stress-tolerant and beneficial secondary metabolites produced by endophytic Bacillus species. In Arora NK (ed) Plant Microbes Symbiosis: Applied Facets (pp. 163–177). Springer India. https://doi.org/10.1007/978-81-322-2068-8_8

  • Balderas-Ruíz, K. A., Gómez-Guerrero, C. I., Trujillo-Roldán, M. A., Valdez-Cruz, N. A., Aranda-Ocampo, S., Juárez, A. M., Leyva, E., Galindo, E., & Serrano-Carreón, L. (2021). Bacillus velezensis 83 increases productivity and quality of tomato (Solanum lycopersicum L.): Pre and postharvest assessment. Current Research in Microbial Sciences, 2, 100076. https://doi.org/10.1016/j.crmicr.2021.100076

    Article  PubMed  PubMed Central  Google Scholar 

  • Borriss, R., Chen, X.-H., Rueckert, C., Blom, J., Becker, A., Baumgarth, B., Fan, B., Pukall, R., Schumann, P., Sproer, C., Junge, H., Vater, J., Puhler, A., & Klenk, H. P. (2011). New taxa-firmicutes and related organisms. International Journal of Systematic and Evolutionary Microbiology, 61, 1–19. https://doi.org/10.1099/ijs.0.023267-0

    Article  CAS  Google Scholar 

  • Cheng, T., Lin, P., Jin, S., Wu, Y., Fu, B., Long, R., Liu, D., Guo, Y., Peng, L., & Xia, Q. (2014). Complete genome sequence of Bacillus bombysepticus, a pathogen leading to Bombyx mori black chest septicemia. Genome Announcements, 2(3), e00312-00314. https://doi.org/10.1128/genomeA.00312-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi, N. M., Tuan, D. X., & Thanh, L. B. (2019). Assessing the impacts of ecological factors on the potential infection of shoot borers of Chukrasia tabularis in the Northwest and North Central, Vietnam. Science and Technology Journal of Agriculture and Rural Development, 20, 67–73.

    Google Scholar 

  • Chi, N. M., Quang, D. N., Hien, B. D., Dzung, P. N., Nhung, N. P., Nam, N. V., Thuy, P. T. T., Tuong, D. V., & Dell, B. (2021). Management of Hypsipyla robusta Moore (Pyralidae) damage in Chukrasia tabularis A. Juss (Meliaceae). International Journal of Tropical Insect Science, 41(4), 2341–2350. https://doi.org/10.1007/s42690-020-00405-3

    Article  Google Scholar 

  • Chi, N. M., Anh, D. T. K., Hung, T. X., Nhung, N. P., Bao, H. Q., Toan, D., Nga, N. T. T., Thuy, P. T. T., Vo, D. N., Dell, B. (2021b). Soft rot disease caused by Dickeya fangzhongdai in epiphytic orchids in Vietnam. Canadian Journal of Plant Pathology, 1–14. https://doi.org/10.1080/07060661.2021.1998226

  • Chi, N. M. (2020). Investigation of screening and planting methods for high value and shoot tip borer tolerance of Chukrasia tabularis in Vietnam. Vietnamese Academy of Forest Sciences, 86p.

  • Couilloud, R., & Guiol, F. (1980). Elevage en laboratoire d’Hypsipyla robusta Moore (Lep. Pyralidae). Revue Bios Forest Des Tropiques, 194, 35–42.

    Google Scholar 

  • Cunningham, S. A., Floyd, R. B., Griffiths, M. W., & Wylie, F. R. (2005). Patterns of host use by the shoot-borer Hypsipyla robusta (Pyralidae: Lepidoptera) comparing five Meliaceae tree species in Asia and Australia. Forest Ecology and Management, 205(1–3), 351–357. https://doi.org/10.1016/j.foreco.2004.10.042

    Article  Google Scholar 

  • da Costa, F. S. S., Praça, L. B., Gomes, A. C. M. M., dos Santos, R. C., Soares, C. M. S., & Monnerat, R. G. (2020). Bacillus thuringiensis effect on the vegetative development of cotton plants and the biocontrol of Spodoptera frugiperda. Agronomy, 10(12), 1889. https://doi.org/10.3390/agronomy10121889

    Article  CAS  Google Scholar 

  • da Costa, F. S. S., de Castro, M. T., & Monnerat, R. (2021). The endophytism of Bacillus thuringiensis in cotton plants at acquisition and oviposition by Bemisia tabaci. Agricultural Research & Technology, 26(3), 556340. https://doi.org/10.19080/ARTOAJ.2021.26.556340

    Article  Google Scholar 

  • Daligault, H. E., Davenport, K. W., Minogue, T. D., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., Chain, P. S., Coyne, S. R., Frey, K. G., Gibbons, H. S., Jaissle, J., Koroleva, G. I., Ladner, J. T., Lo, C. C., Munk, C., Palacios, G. F., Redden, C. L., Rosenzweig, C. N., Scholz, M. B., & Johnson, S. L. (2014). Twenty whole-genome Bacillus sp. assemblies. Genome Announcements, 2(5), e00958-00914. https://doi.org/10.1128/genomeA.00958-14

    Article  PubMed  PubMed Central  Google Scholar 

  • de Castro, M. T., Montalvão, S. C. L., & Monnerat, R. G. (2019). Control of mahogany shoot borer, Hypsipyla grandella (Lepidoptera: Pyralidae), with Bacillus thuringiensis in a systemic way. Nativa: Pesquisas Agrárias e Ambientais, 7(4), 426–430. https://doi.org/10.31413/nativa.v7i4.6567

    Article  Google Scholar 

  • Domínguez-Arrizabalaga, M., Villanueva, M., Escriche, B., Ancín-Azpilicueta, C., & Caballero, P. (2020). Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins, 12(7), 430. https://doi.org/10.3390/toxins12070430

    Article  CAS  PubMed Central  Google Scholar 

  • Dunlap, C. A., Kim, S. J., Kwon, S. W., & Rooney, A. P. (2016). Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. International Journal of Systematic and Evolutionary Microbiology, 66(3), 1212–1217. https://doi.org/10.1099/ijsem.0.000858

    Article  CAS  PubMed  Google Scholar 

  • Eid, A. M., Fouda, A., Abdel-Rahman, M. A., Salem, S. S., Elsaied, A., Oelmüller, R., Hijri, M., Bhowmik, A., Elkelish, A., & Hassan, S.E.-D. (2021). Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: An overview. Plants, 10(5), 935. https://doi.org/10.3390/plants10050935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinosa, Zaragoza S., Sánchez-Cruz, R., Sanzón-Gómez, D., Escobar-Sandoval, M. C., Yañez-Ocampo, G., Morales-Constantino, M. A., & Wong-Villarreal, A. (2021). Identification of endophytic bacteria of seeds from Cedrela odorata L. (Meliaceae) with biotechnological characteristics. Acta Biológica Colombiana, 26(2), 196–206. https://doi.org/10.15446/abc.v26n2.85325

    Article  CAS  Google Scholar 

  • Etminani, F., & Harighi, B. (2018). Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. Plant Pathology Journal, 34(3), 208–217. https://doi.org/10.5423/PPJ.OA.07.2017.0158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: A justification. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Ferreira, M. C., Vieira, Md. L. A., Zani, C. L., Alves, TMd. A., Junior, P. A. S., Murta, S. M. F., Romanha, A. J., Gil, L. H. V. G., Carvalho, AGd. O., Zilli, J. E., Vital, M. J. S., Rosa, C. A., & Rosa, L. H. (2015). Molecular phylogeny, diversity, symbiosis and discover of bioactive compounds of endophytic fungi associated with the medicinal Amazonian plant Carapa guianensis Aublet (Meliaceae). Biochemical Systematics and Ecology, 59, 36–44. https://doi.org/10.1016/j.bse.2014.12.017

    Article  CAS  Google Scholar 

  • Gunn, B. V., Aken, K., & Pinyopusarerk, K. (2006). Provenance performance of Chukrasia in a five-year-old field trial in the Northern Territory, Australia. Australian Forestry, 69(2), 122–127. https://doi.org/10.1080/00049158.2006.10676238

    Article  Google Scholar 

  • Hartman, E. (1931). A flacherie disease of silkworms caused by Bacillus bombysepticus. Lignan Science Journal, 10, 279–289.

    Google Scholar 

  • Harun-Or-Rashid, M., Khan, A., Hossain, M. T., & Chung, Y. R. (2017). Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis. Frontiers in Plant Science, 8, 211. https://doi.org/10.3389/fpls.2017.00211

    Article  Google Scholar 

  • Harun-Or-Rashid, M., Kim, H. J., Yeom, S. I., Yu, H. A., Manir, M. M., Moon, S. S., Kang, Y. J., & Chung, Y. R. (2018). Bacillus velezensis YC7010 enhances plant defenses against brown planthopper through transcriptomic and metabolic changes in rice. Frontiers in Plant Science, 9, 1904. https://doi.org/10.3389/fpls.2018.01904

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, L., Cheng, T., Xu, P., Cheng, D., Fang, T., & Xia, Q. (2009). A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PLoS ONE, 4(12), e8098. https://doi.org/10.1371/journal.pone.0008098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova, N., Sorokin, A., Anderson, I., Galleron, N., Candelon, B., Kapatral, V., Bhattacharyya, A., Reznik, G., Mikhailova, N., Lapidus, A., Chu, L., Mazur, M., Goltsman, E., Larsen, N., D’Souza, M., Walunas, T., Grechkin, Y., Pusch, G., Haselkorn, R., … Kyrpides, N. (2003). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature, 423(6935), 87–91. https://doi.org/10.1038/nature01582

    Article  CAS  PubMed  Google Scholar 

  • Jeong, H., Jeong, D. E., Kim, S. H., Song, G. C., Park, S. Y., Ryu, C. M., Park, S. H., & Choia, S. K. (2012). Draft genome sequence of the plant growth-promoting bacterium Bacillus siamensis KCTC 13613T. Journal of Bacteriology, 194(15), 4148. https://doi.org/10.1128/JB.00805-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez, G., Urdiain, M., Cifuentes, A., López-López, A., Blanch, A. R., Tamames, J., Kämpfer, P., Kolstø, A. B., Ramón, D., Martínez, J. F., Codoñer, F. M., & Rosselló-Móra, R. (2013). Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Systematic and Applied Microbiology, 36(6), 383–391. https://doi.org/10.1016/j.syapm.2013.04.008

    Article  PubMed  Google Scholar 

  • Johnson, S. L., Daligault, H. E., Davenport, K. W., Jaissle, J., Frey, K. G., Ladner, J. T., Broomall, S. M., Bishop-Lilly, K. A., Bruce, D. C., Gibbons, H. S., Coyne, S. R., Lo, C. C., Meincke, L., Munk, A. C., Koroleva, G. I., Rosenzweig, C. N., Palacios, G. F., Redden, C. L., Minogue, T. D., & Chain, P. S. (2015). Complete genome sequences for 35 biothreat assay-relevant Bacillus species. Genome Announcements, 3(2), e00151-e115. https://doi.org/10.1128/genomeA.00151-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinganire, A., & Pinyopusarerk, K. (2000). Chukrasia: Biology, cultivation and utilisation (Vol. 49). ACIAR publications Canberra.

    Google Scholar 

  • Kharwar, R. N., Sharma, V. K., Mishra, A., Kumar, J., Singh, D. K., Verma, S. K., Gond, S. K., Kumar, A., Kaushik, N., Revuru, B., & Kusari, S. (2020). Harnessing the phytotherapeutic treasure troves of the ancient medicinal plant Azadirachta indica (Neem) and associated endophytic microorganisms. Planta Medica, 86(13/14), 906–940. https://doi.org/10.1055/a-1107-9370

    Article  CAS  PubMed  Google Scholar 

  • Ko, K. S., Kim, J. W., Man, K. J., Kim, W., Chung, S. I., Kim, I. J., & Kook, Y. H. (2004). Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR gene. Infection and Immunity, 72(9), 5253–5261. https://doi.org/10.1128/IAI.72.9.5253-5261.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Küster, E., & Williams, S. T. (1964). Selection of media for isolation of Streptomycetes. Nature, 202(4935), 928–929. https://doi.org/10.1038/202928a0

    Article  Google Scholar 

  • Li, H., Soares, M. A., Torres, M. S., Bergen, M., & White, J. F. (2015). Endophytic bacterium, Bacillus amyloliquefaciens, enhances ornamental hosta resistance to diseases and insect pests. Journal of Plant Interactions, 10(1), 224–229. https://doi.org/10.1080/17429145.2015.1056261

    Article  CAS  Google Scholar 

  • Liang, L., Fu, Y., Deng, S., Wu, Y., & Gao, M. (2022). Genomic, antimicrobial, and aphicidal traits of Bacillus velezensis ATR2, and its biocontrol potential against ginger rhizome rot disease caused by Bacillus pumilus. Microorganisms, 10(1), 63. https://doi.org/10.3390/microorganisms10010063

    Article  CAS  Google Scholar 

  • Liu, Y., Lai, Q., Dong, C., Sun, F., Wang, L., Li, G., & Shao, Z. (2013). Phylogenetic diversity of the Bacillus pumilus group and the marine ecotype revealed by multilocus sequence analysis. PLoS ONE, 8(11), e80097. https://doi.org/10.1371/journal.pone.0080097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Du, J., Lai, Q., Zeng, R., Ye, D., Xu, J., & Shao, Z. (2017). Proposal of nine novel species of the Bacillus cereus group. International Journal of Systematic and Evolutionary Microbiology, 67(8), 2499–2508. https://doi.org/10.1099/ijsem.0.001821

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Wang, L., Han, M., Xue, Q. H., Zhang, G. S., Gao, J., & Sun, X. (2020). Bacillus fungorum sp. nov., a bacterium isolated from spent mushroom substrate. International Journal of Systematic and Evolutionary Microbiology, 70(3), 1457–1462. https://doi.org/10.1099/ijsem.0.003673

    Article  CAS  PubMed  Google Scholar 

  • Myo, E. M., Liu, B., Ma, J., Shi, L., Jiang, M., Zhang, K., & Ge, B. (2019). Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biological Control, 134, 23–31. https://doi.org/10.1016/j.biocontrol.2019.03.017

    Article  Google Scholar 

  • Ngo, V. A., Wang, S. L., Nguyen, V. B., Doan, C. T., Tran, T. N., Tran, D. M., Tran, T. D., & Nguyen, A. D. (2020). Phytophthora antagonism of endophytic bacteria isolated from roots of black pepper (Piper nigrum L.). Agronomy, 10(2), 286. https://doi.org/10.3390/agronomy10020286

    Article  CAS  Google Scholar 

  • Pinyopusarerk, K., Kalinganire, A. (2003). Domestication of Chukrasia. ACIAR Monograph 98, Aciar Publishing: 45p.

  • Podolich, O., Ardanov, P., Zaets, I., Pirttilä, A. M., & Kozyrovska, N. (2015). Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant and Soil, 388(1), 367–377. https://doi.org/10.1007/s11104-014-2235-1

    Article  CAS  Google Scholar 

  • Rabbee, M. F., Ali, M. S., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. H. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6), 1046. https://doi.org/10.3390/molecules24061046

    Article  CAS  PubMed Central  Google Scholar 

  • Ruiz de Escudero, I., Banyuls, N., Bel, Y., Maeztu, M., Escriche, B., Muñoz, D., Caballero, P., & Ferré, J. (2014). A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. Journal of Invertebrate Pathology, 117, 51–55. https://doi.org/10.1016/j.jip.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-García, C., Béjar, V., Martínez-Checa, F., Llamas, I., & Quesada, E. (2005). Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. International Journal of Systematic and Evolutionary Microbiology, 55(1), 191–195. https://doi.org/10.1099/ijs.0.63310-0

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen, K., Gundel, P. E., & Helander, M. (2013). Chemical ecology mediated by fungal endophytes in grasses. Journal of Chemical Ecology, 39(7), 962–968. https://doi.org/10.1007/s10886-013-0310-3

    Article  CAS  PubMed  Google Scholar 

  • Savi, D. C., Aluizio, R., Galli-Terasawa, L., Kava, V., & Glienke, C. (2016). 16S-gyrB-rpoB multilocus sequence analysis for species identification in the genus Microbispora. Antonie Van Leeuwenhoek, 109(6), 801–815. https://doi.org/10.1007/s10482-016-0680-y

    Article  CAS  PubMed  Google Scholar 

  • Schardl, C. L., Young, C. A., Faulkner, J. R., Florea, S., & Pan, J. (2012). Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecology, 5(3), 331–344. https://doi.org/10.1016/j.jip.2014.01.006

    Article  CAS  Google Scholar 

  • Shifa, H., Gopalakrishnan, C., & Velazhahan, R. (2018). Management of late leaf spot (Phaeoisariopsis personata) and root rot (Macrophomina phaseolina) diseases of groundnut (Arachis hypogaea L.) with plant growth-promoting rhizobacteria, systemic acquired resistance inducers and plant extracts. Phytoparasitica, 46(1), 19–30. https://doi.org/10.1007/s12600-018-0644-z

    Article  Google Scholar 

  • Srivatsan, A., Han, Y., Peng, J., Tehranchi, A. K., Gibbs, R., Wang, J. D., & Chen, R. (2008). High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genetics, 4(8), e1000139. https://doi.org/10.1371/journal.pgen.1000139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan, T. J., Rodstrom, J., Vandop, J., Librizzi, J., Graham, C., Schardl, C. L., & Bultman, T. L. (2007). Symbiont-mediated changes in Lolium arundinaceum inducible defenses: Evidence from changes in gene expression and leaf composition. New Phytologist, 176(3), 673–679. https://doi.org/10.1111/j.1469-8137.2007.02201.x

    Article  CAS  PubMed  Google Scholar 

  • Talukder, F. A., & Howse, P. E. (1994). Laboratory evaluation of toxic and repellent properties of the pithraj tree, Aphanamixis polystachya Wall & Parker, against Sitophilus oryzae (L.). International Journal of Pest Management, 40(3), 274–279. https://doi.org/10.1080/09670879409371897

    Article  Google Scholar 

  • Thanh, V. N., Duc, Hien D., Yaguchi, T., Sampaio, J. P., & Lachance, M.-A. (2018). Moniliella sojae sp. nov., a species of black yeasts isolated from Vietnamese soy paste (tuong), and reassignment of Moniliella suaveolens strains to Moniliella pyrgileucina sp. nov., Moniliella casei sp. nov. and Moniliella macrospora emend. comb. nov. International Journal of Systematic and Evolutionary Microbiology, 68(5), 1806–1814. https://doi.org/10.1099/ijsem.0.002690

    Article  CAS  PubMed  Google Scholar 

  • Thu, P. Q., Quang, D. N., Chi, N. M., Hung, T. X., Binh, L. V., & Dell, B. (2021). New and emerging insect pest and disease threats to forest plantations in Vietnam. Forests, 12(10), 1301. https://doi.org/10.3390/f12101301

    Article  Google Scholar 

  • Thyagaraja, N. E., Rani, A. T. (2019). Techniques for determining the repellent and antifeedant activity to phytophagous insects. In: Experimental techniques in host-plant resistance (pp. 183–186). Springer. https://doi.org/10.1007/978-981-13-2652-3_20

  • Tran, D. M., Huynh, T. U., Nguyen, T. H., Do, O. T., Vinh, N. Q., & Nguyen, D. A. (2022). Molecular analysis of genes involved in chitin degradation from the chitinolytic bacterium Bacillus velezensis. Antonie Van Leeuwenhoek, 115(2), 215–231. https://doi.org/10.21203/rs.3.rs-998405/v1

    Article  CAS  PubMed  Google Scholar 

  • Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3-new capabilities and interfaces. Nucleic Acids Research, 40(15), e115–e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L. T., Lee, F. L., Tai, C. J., & Kuo, H. P. (2008). Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. International Journal of Systematic and Evolutionary Microbiology, 58(3), 671–675. https://doi.org/10.1099/ijs.0.65191-0

    Article  CAS  PubMed  Google Scholar 

  • Wu, W., Chen, W., Liu, S., Wu, J., Zhu, Y., Qin, L., & Zhu, B. (2021). Beneficial relationships between endophytic bacteria and medicinal plants. Frontiers in Plant Science, 12, 758. https://doi.org/10.3389/fpls.2021.646146

    Article  Google Scholar 

  • Yi, H., Chun, J., & Cha, C. J. (2014). Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis. Systematic and Applied Microbiology, 37(2), 95–99. https://doi.org/10.1016/j.syapm.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  • Zwick, M. E., Joseph, S. J., Didelot, X., Chen, P. E., Bishop-Lilly, K. A., Stewart, A. C., Willner, K., Nolan, N., Lentz, S., & Thomason, M. K. (2012). Genomic characterization of the Bacillus cereus sensu lato species: Backdrop to the evolution of Bacillus anthracis. Genome Research, 22(8), 1512–1524. https://doi.org/10.1101/gr.134437.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Agricultural and Rural Development of Vietnam under decree number 3710/QD-BNN-KHCN dated 15/9/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Chi.

Ethics declarations

Conflicts of interest

On behalf of the authors, there are no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1730 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tra, T.T.L., Chi, N.M., Anh, D.T.K. et al. Bacterial endophytes from Chukrasia tabularis can antagonize Hypsipyla robusta larvae. Phytoparasitica 50, 655–668 (2022). https://doi.org/10.1007/s12600-022-01001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-022-01001-6

Keywords

Navigation