Skip to main content

Advertisement

Log in

Management of late leaf spot (Phaeoisariopsis personata) and root rot (Macrophomina phaseolina) diseases of groundnut (Arachis hypogaea L.) with plant growth-promoting rhizobacteria, systemic acquired resistance inducers and plant extracts

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Greenhouse experiments were conducted to study the efficacy of plant growth-promoting rhizobacteria (PGPR) for control of root rot (RR) in groundnut (Arachis hypogaea L.) caused by Macrophomina phaseolina and to test the ability of plant systemic acquired resistance (SAR) inducers and plant extracts to protect groundnut plants from late leaf spot (LLS) caused by Phaeoisariopsis personata. Seed treatment and soil application of a talc-based formulation of B. subtilis strain G1 significantly reduced the incidence of root rot under greenhouse conditions. In experiments with SAR inducers, foliar application of salicylic acid (SA) (7 mM) on 45 days after sowing significantly reduced LLS incidence and increased the pod yield. Foliar application of aqueous extract (10%) from leaves of Adhatoda vasica and zimmu (Allium sativum x A. cepa) on 45 days after sowing significantly decreased the LLS incidence and increased the pod yield compared with the untreated control. Field experiments were conducted to develop an integrated method for the management of LLS and RR of groundnut using the best performing PGPR, SAR inducer and plant extract in combinations. Combined application of B. subtilis strain G1 through seed (10 g/kg) and soil (2.5 kg/ha) followed by foliar application of A. vasica extract (10%) on 30, 45 and 60 days after sowing significantly reduced LLS and RR diseases in groundnut and increased the pod yield under field conditions. The above treatment resulted in significant reductions in the area under the disease progress curve (AUDPC) for LLS compared with that of untreated control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, R., Flad, Y., & Sneh, B. (1986). Physical, biological and host factors in iron competition in soils. In T. R. Swinburne (Ed.), Iron siderophores and plant diseases (pp. 77–84). Plenum press: New York.

    Chapter  Google Scholar 

  • Caliskan, S., Arslan, M., & Arioglu, H. (2008). Effects of sowing date and growth duration on growth and yield of groundnut in a Mediterranean-type environment in Turkey. Field Crops Research, 105, 131–140.

    Article  Google Scholar 

  • Cameco, M., Santamaria, C., Temprano, F., Rodrguez-Navarro, D. N., & Daza, A. (2001). Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Canadian Journal of Microbiology, 47, 1058–1062.

    Article  Google Scholar 

  • Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: John Wiley and Sons.

    Google Scholar 

  • Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiological Research, 164, 493–513.

    Article  CAS  PubMed  Google Scholar 

  • Claeson, U. P., Malmfors, T., Wikman, G., & Bruhn, J. G. (2000). Adhatoda vasica: A critical review of ethnopharmacological and toxicological data. Journal of Ethnopharmacology, 72, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Daayf, F., Schmitt, A., & Belanger, R. R. (1995). The effects of plant extracts of Reynoutria sachalinensis on powdery mildew development and leaf physiology of long English cucumber. Plant Disease, 79, 577–580.

    Article  Google Scholar 

  • Delaney, T. P., Friedrich, L., & Ryals, J. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proceedings of the National Academy of Sciences, 92, 6602–6606.

    Article  CAS  Google Scholar 

  • Dijkstra, A. F., Scholten, G. H. N., & van Veen, J. A. (1987). Colonization of wheat seedling (Triticum aestivum) roots by Pseudomonas fluorescens and Bacillus subtilis. Biology and Fertility of Soils, 4, 41–46.

    Article  Google Scholar 

  • Doubrava, N., Dean, R., & Kuc, J. (1988). Induction of systemic resistance to anthracnose caused by Colletotrichum lagenarium in cucumber by oxalates and extracts from spinach and rhubarb leaves. Physiological and Molecular Plant Pathology, 33, 69–79.

    Article  CAS  Google Scholar 

  • Earl, A. M., Losick, R., & Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends in Microbiology, 16, 269–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2012). FAO statistics division 2014. http://faostat.fao.org.

  • Figueroa-Lopez, A. M., Cordero-Ramirez, J. D., Martinez-Alvarez, J. C., Lopez-Meyer, M., Lizarraga-Sanchez, G. J., Felix-Gastelum, R., Castro-Martinez, C., & Maldonado-Mendoza, I. E. (2016). Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springer Plus, 5, 330.

  • Fiori, A. C. G., Schwan-Estrada, K. R. F., Stangarlin, J. R., Vida, J. B., Scapim, A., Cruz, M. E. S., & Pascholati, S. F. (2000). Antifungal activity of leaf extracts and essential oils of some medicinal plants against Didymella bryoniae. Journal of Phytopathology, 148, 483–487.

    Article  CAS  Google Scholar 

  • Fofana, D., McNally, D. J., Labbe, C., Boulanger, R., Benhamou, N., Seguin, A., & Belanger, R. R. (2002). Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiological and Molecular Plant Pathology, 6, 121–132.

    Article  Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., & Ryals, J. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261, 754–756.

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj, J., Muthukrishnan, S., Liang, G. H., & Velazhahan, R. (2004). Jasmonic acid and salicylic acid induce accumulation of β-1,3-glucanse and thaumatin-like proteins in wheat and enhance resistance against Stagonospora nodorum. Biologia Plantarum, 48, 425–430.

    Article  CAS  Google Scholar 

  • Karthikeyan, V., Sankaralingam, A., & Nakkeeran, S. (2006). Management of groundnut root rot with biocontrol agents and organic amendments. Archives of Phytopathology and Plant Protection, 39, 215–223.

    Article  Google Scholar 

  • Karthikeyan, M., Sandosskumar, R., Radhajeyalakshmi, R., Mathiyazhagan, S., Khabbaz, S. E., Ganesamurthy, K., Selvi, B., & Velazhahan, R. (2007). Effect of formulated zimmu (Allium cepa L. x Allium sativum L.) extract in the management grain mold of sorghum. Journal of the Science of Food and Agriculture, 87, 2495–2501.

    Article  CAS  Google Scholar 

  • Kishore, G. K., Pande, S., & Rao, J. N. (2001). Control of late leaf spot of groundnut (Arachis hypogaea) by extracts from non-host plant species. The Plant Pathology Journal, 17, 264–270.

    Google Scholar 

  • Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  • Kuc, J. (1982). Induced immunity to plant disease. Bioscience, 32, 854–860.

    Article  Google Scholar 

  • Lahlali, R., Peng, G., Gossen, B. D., McGregor, L., Yu, F. Q., Hynes, R. K., Hwang, S. F., McDonald, M. R., & Boyetchko, S. M. (2013). Evidence that the biofungicide serenade (Bacillus subtilis) suppresses club root on canola via antibiosis and induced host resistance. Phytopathology, 103, 245–254.

    Article  CAS  PubMed  Google Scholar 

  • Latha, P., Anand, T., Ragupathi, N., Prakasam, V., & Samiyappan, R. (2009). Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and zimmu leaf extract against Alternaria solani. Biological Control, 50, 85–93.

    Article  Google Scholar 

  • Malamy, J., Leon, J. P., Klessig, D. F., & Raskin, I. (1990). Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250, 1002–1004.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, D., Subrahmanyam, P., Gibbons, R. W., & Smith, D. H. (1985). Early and late leaf spot of groundnut. Information bulletin no. 21 (p. 24). Patancheru, Andra Pradesh: International Crops Research Institute for the Semi-Arid Tropics.

    Google Scholar 

  • Meena, B., Marimuthu, T., Vidyasekaran, P., & Velazhahan, R. (2001). Biological control of root rot of groundnut with antagonistic Pseudomonas fluorescens strains. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 108, 369–381.

    CAS  Google Scholar 

  • Mills, P. R., & Wood, R. K. S. (1984). The effects of polyacrylic acid, acetylsalicylic acid and salicylic acid on resistance of cucumber to Colletotrichum lagenarium. Journal of Phytopathology, 111, 209–216.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2013). Design and analysis of experiments (7th ed.). New York: John Wiley & Sons.

    Google Scholar 

  • Muthukumar, A., Eswaran, A., Nakkeeran, S., & Sangeetha, G. (2010). Efficacy of plant extracts and biocontrol agents against Pythium aphanidermatum inciting chilli damping-off. Crop Protection, 29, 1483–1488.

    Article  Google Scholar 

  • Neela, F. A., Sonia, I. A., & Shamsi, S. (2014). Antifungal activity of selected medicinal plant extract on Fusarium oxysporum Schlechtthe causal agent of fusarium wilt disease in tomato. American Journal of Plant Sciences, 5, 2665–2671.

    Article  Google Scholar 

  • Patel, S. T., & Anahosur, K. H. (2001). Potential antagonism of Trichoderma harzianum against Fusarium spp., Macrophomina phaseolina and Sclerotium rolfsii. Journal of Mycology and Plant Pathology, 31, 365–366.

    Google Scholar 

  • Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S., & Kloepper, J. W. (1996). Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumo virus using plant growth-promoting rhizobacteria (PGPR). Plant Disease, 80, 891–894.

    Article  Google Scholar 

  • Riker, A. J., & Riker, R. S. (1936). Introduction to research on plant disease. St. Louis: John Swift and Co..

    Google Scholar 

  • Romeiro, R. S., Filho, R. L., Macagnan, D., Garcia, F. A. O., & Silva, H. S. A. (2010). Evidence that the biocontrol agent Bacillus cereus synthesizes protein that can elicit increased resistance of tomato leaves to Corynespora cassiicola. Tropical Plant Pathology, 35, 11–15.

    Google Scholar 

  • SAS Institute (2008). SAS System Version 9.2 for windows. Cary.

  • Satya, V. K., Radhajeyalakshmi, R., Kavitha, K., Paranidharan, V., Bhaskaran, R., & Velazhahan, R. (2005). In vitro antimicrobial activity of Zimmu (Allium sativum L. X Allium cepa L.) leaf extract. Archives of Phytopathology and Plant Protection, 38, 185–192.

    Article  Google Scholar 

  • Satya, V. K., Gayathiri, S., Bhaskaran, R., Paranidharan, V., & Velazhahan, R. (2007). Induction of systemic resistance to bacterial blight caused by Xanthomonas campestris pv. malvacearum in cotton by leaf extract from a medicinal plant zimmu (Allium sativum L. x Allium cepa L.) Archives of Phytopathology and Plant Protection, 40, 309–322.

    Article  Google Scholar 

  • Satya, V. K., Vijayasamundeeswari, A., Paranidharan, V., & Velazhahan, R. (2011). Burkholderia sp. strain TNAU-1 for biological control of root rot in mungbean (Vigna radiata L.) caused by Macrophomina phaseolina. Journal of Plant Protection Research, 51, 273–278.

    Article  Google Scholar 

  • Sen, B. (2000). Biological control: A success story. Indian. Phytopathology, 53, 243–249.

    Google Scholar 

  • Shaner, E., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 67, 1051–1056.

    Article  CAS  Google Scholar 

  • Sharma, R. C., & Bhowmik, T. P. (1987). Effect of Macrophomina phaseolina infection on the physico-chemical components of groundnut seed. Journal of Phytopathology, 118, 181–186.

    Article  CAS  Google Scholar 

  • Shifa, H., Gopalakrishnan, C., & Velazhahan, R. (2015a). Efficacy of Bacillus subtilis G-1 in suppression of stem rot caused by Sclerotium rolfsii and growth promotion of groundnut. International Journal of Agriculture, Environment and Biotechnology, 8, 111–118.

    Article  Google Scholar 

  • Shifa, H., Gopalakrishnan, C., & Velazhahan, R. (2015b). Characterization of antifungal antibiotics produced by Bacillus subtilis G1 antagonistic to Sclerotium rolfsii. Biochemical and Cellular Archives, 15, 99–104.

    Google Scholar 

  • Shifa, H., Gopalakrishnan, C., & Velazhahan, R. (2016). Biological control of pre-harvest aflatoxin contamination in groundnut (Arachis hypogaea L.) with Bacillus subtilis G1. Archives of Phytopathology and Plant Protection, 49, 137–148.

    Article  CAS  Google Scholar 

  • Singh, N., Pandey, P., Dubey, R. C., & Maheshwari, D. K. (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology, 24, 1669–1679.

    Article  Google Scholar 

  • Smith, D. H., & Littrell, R. H. (1980). Management of peanut foliar diseases with fungicides. Plant Disease, 64, 356–361.

    Article  Google Scholar 

  • Srinivas, T., Rao, M. S., Reddy, P. S., & Reddy, P. N. (1997). Integrated management of leaf spot of groundnut (Arachis hypogaea L.) with botanicals and chemicals. Zeitschrift fur Pflanzenkrankheiten una Pflanzenschutz, 104, 528–530.

    CAS  Google Scholar 

  • Srivastava, S., Ram, K. V., Madan, M. G., Subhash, C. S., & Kumar, S. (2001). HPLC determination of vasicine and vasicinone in Adhatoda vasica with photo diode array detection. Journal of Liquid Chromatography and Related Technologies, 24, 153–159.

    Article  CAS  Google Scholar 

  • Subrahmanyam, P., Mcdonald, D., Waliyar, F., Reddy, L. J., Nigam, S. N., Gibbons, R. W., Rao, V. R., Singh, A. K., Pande, S., Reddy, P. M., & Subba Rao, P. V. (1995). Screening methods and sources of resistance to rust and late leaf spot of groundnut. Information bulletin no. 47 (p. 19). Patancheru, Andra Pradesh: International Crops Research Institute for the Semi-Arid Tropics.

    Google Scholar 

  • Thiessen, L. D., & Woodward, J. E. (2012). Diseases of peanut caused by soil-borne pathogens in the southwestern United States. ISRN Agronomy, 2012, 517905. https://doi.org/10.5402/2012/517905

    Article  Google Scholar 

  • Upadhyaya, H. D., Reddy, L. J., Gowda, C. L. L., & Singh, S. (2006). Identification of diverse groundnut germplasm: Sources of early maturity in a core collection. Field Crops Research, 97, 261–271.

    Article  Google Scholar 

  • Van der Plank, J. E. (1963). Plant diseases: Epidemic and control. New York: Academic Press.

    Google Scholar 

  • Vidhyasekaran, P., & Muthamilan, M. (1995). Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Disease, 79, 782–786.

    Article  Google Scholar 

  • Vidhyasekaran, P., Kamala, N., Ramanathan, A., Rajappan, K., Paranidharan, V., & Velazhahan, R. (2001). Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. oryzae in rice leaves. Phytoparasitica, 29, 155–166.

    Article  Google Scholar 

  • Walters, D. R., & Fountaine, J. M. (2009). Practical application of induced resistance to plant diseases: An appraisal of effectiveness under field conditions. Journal of Agricultural Science, 147, 523–535.

    Article  CAS  Google Scholar 

  • Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64, 1263–1280.

    Article  CAS  PubMed  Google Scholar 

  • Wei, G., Kloepper, J. W., & Tuzun, S. (1991). Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology, 81, 1508–1512.

    Article  Google Scholar 

  • Wyllie, T. D. (1993). Compendium of soybean diseases (3rd ed.). St. Paul: The American Phytopathological Society.

    Google Scholar 

  • Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A., & Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 3, 809–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamunarani, K., Jaganathan, R., Bhaskaran, R., Govindaraju, P., & Velazhahan, R. (2004). Induction of early blight resistance in tomato by Quercus infectoria gall extract in association with accumulation of phenolics and defense-related enzymes. Acta Physiologiae Plantarum, 26, 281–290.

    Article  CAS  Google Scholar 

  • Zheljazkov, V. D., Cantrell, C. L., Astatkie, T., & Cannon, J. B. (2011). Lemongrass productivity, oil content, and composition as a function of nitrogen, sulfur, and harvest time. Agronomy Journal, 103, 805–812.

Download references

Acknowledgments

We acknowledge the support of fellowship by the Indian Council of Agricultural Research, New Delhi to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Shifa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shifa, H., Gopalakrishnan, C. & Velazhahan, R. Management of late leaf spot (Phaeoisariopsis personata) and root rot (Macrophomina phaseolina) diseases of groundnut (Arachis hypogaea L.) with plant growth-promoting rhizobacteria, systemic acquired resistance inducers and plant extracts. Phytoparasitica 46, 19–30 (2018). https://doi.org/10.1007/s12600-018-0644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-018-0644-z

Keywords

Navigation