Skip to main content
Log in

Activation of antioxidant defense in maize in response to attack by Sesamia inferens (Walker)

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Plants defend from herbivores by activating a plethora of genetic and biochemical mechanisms aimed at reducing insect survival and plant damage. In this study, we analyzed constitutive and insect damage induced macromolecules, antioxidant enzymes and corresponding antioxidants in order to identify strength of resistance in maize in response to attack by Sesamia inferens. There were significant differences among the maize genotypes for all the test biochemicals. Further, the S. inferens damage resulted in significant increase in total proteins, total sugars, catalase, phenyl ammonia lyase, tyrosine ammonia lyase, total antioxidants, total phenol, tannins and Ferric ion reducing antioxidant power, but there was also a significant variation in increase in these biochemicals with respect to genotypes. The integrative analysis of these macromolecules, antioxidant enzymes and antioxidants revealed that the S. inferens damage in maize is characterized by higher secondary metabolite production and a strong redox response in resistant maize genotypes, mainly mediated by tannins and phenols as anti-nutritive compounds. Furthermore, the maize genotypes viz., CPM 2, CPM 9, CPM 13, CPM 15 and CML 345 were found with greater constitutive and/or pink stem borer induced defense phytochemicals like enzymatic activity and nonenzymatic antioxidant defense biochemicals, thus could be used to develop S. inferens resistant varieties of maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126

    Article  CAS  PubMed  Google Scholar 

  • Amorim, L. C., Nasciment, J. E., Monteiro, J. M., Sobrinho, J. S., Araujo, A. S., & Albuquerque, U. P. (2008). A simple and accurate procedure for the determination of tannin and flavonoid levels and some applications in ethnobotany and ethnopharmacology. Functional Ecosystems and Communities, 2, 88–94

    Google Scholar 

  • Asada, K. (1992). Ascorbate peroxidase–a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum, 85, 235–241

    Article  CAS  Google Scholar 

  • Barbehenn, R. V., & Constabel, P. C. (2011). Tannins in plant-herbivore interactions. Phytochemistry, 72, 1551–1565.

    Article  CAS  PubMed  Google Scholar 

  • Benzie, I. F., & Strain, J. J. (1999). Ferric reducing /antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27

    Article  CAS  PubMed  Google Scholar 

  • Bhoi, T. K., Trivedi, N., Kumar, H., Tanwar, A. K., & Dhillon, M. K. (2021). Biochemical defense in maize against Chilo partellus (Swinhoe) through activation of enzymatic and nonenzymatic antioxidants. Indian Journal of Experimental Biology, 59(1), 54–63

    CAS  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254

    Article  CAS  PubMed  Google Scholar 

  • Cao, A., Butrón, A., Malvar, R. A., Garrido, D. F., & Santiago, R. (2019). Effect of long-term feeding by borers on the antibiotic properties of corn stems. Journal of Economic Entomology, 112, 1439–1446

    Article  CAS  PubMed  Google Scholar 

  • Caroline, S. A., & Simon, R. L. (2002). Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47, 817–844

    Article  Google Scholar 

  • Chen, Y., Ni, X., & Buntin, G. D. (2009). Physiological, nutritional, and biochemical bases of corn resistance to foliage-feeding fall armyworm. Journal of Chemical Ecology, 35, 297–306

    Article  PubMed  Google Scholar 

  • Clegg, K. M. (1956). The application of the anthrone reagent to the estimation of starch in cereals. Journal of the Science of Food and Agriculture, 7, 40–44

    Article  CAS  Google Scholar 

  • Dafoe, N. J., Thomas, J. D., Shirk, P. D., Legaspi, M. E., Vaughan, M. M., Huffaker, A. … Schmelz, E. A. (2013). European corn borer (Ostrinia nubilalis) induced responses enhance susceptibility in maize. PLoS One, 8, e73394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhillon, M. K., Kalia, V. K., & Gujar, G. T. (2014). Insect pests and their management: Current status and future need of research in quality maize. In D. P. Choudhary, S. Kumar, & S. Langyan (Eds.), Maize: Nutrition Dynamics and Novel Uses. Springer

    Google Scholar 

  • Dhillon, M. K., & Chaudhary, D. P. (2015). Biochemical interactions for antibiosis mechanism of resistance to Chilo partellus (Swinhoe) in different maize types. Arthropod-Plant Interactions, 9(4), 373–382

    Article  Google Scholar 

  • Dhillon, M. K., & Kumar, S. (2017). Amino acid profiling of Sorghum bicolor vis-à-vis Chilo partellus (Swinhoe) for biochemical interactions and plant resistance. Arthropod-Plant Interactions, 11(4), 537–394550

    Article  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356

    Article  CAS  Google Scholar 

  • Fritz, R. R., Hodcins, D. S., & Abell, C. W. (1976). Phenylalanine ammonia lyase induction and purification from yeast and clearance in mammals. Journal of Biological Chemistry, 251, 4646–4650

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Lara, S., & Bergvinson, D. J. (2014). Phytochemical and nutraceutical changes during recurrent selection for storage pest resistance in tropical maize. Crop Science, 54, 2423–2432

    Article  Google Scholar 

  • Gatehouse, J. A. (2002). Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist, 156, 145–169

    Article  CAS  PubMed  Google Scholar 

  • Gesteiro, N., Butrón, A., Estévez, S., & Santiago, R. (2021). Unraveling the role of maize (Zea mays L.) cell-wall phenylpropanoids in stem-borer resistance. Phytochemistry, 185, 112683

    Article  CAS  PubMed  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930

    Article  CAS  PubMed  Google Scholar 

  • Grayer, R. J., Kimmins, F. M., Padgham, D. E., Harborne, J. B., & Ranga Rao, D. V. (1992). Condensed tannin levels and resistance in groundnuts (Arachis hypogoea (L.)) against Aphis craccivora (Koch). Phytochemistry, 31, 3795–3800

    Article  CAS  Google Scholar 

  • Howe, G. A., & Jander, G. (2008). Plant immunity to insect herbivores. Annual Review of Plant Biology, 59, 41–66

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers of Plant Science, 10, 800

    Article  Google Scholar 

  • Kumar, H. (1997). Resistance in maize to Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae), an overview. Crop Protection, 16, 243–250

    Article  Google Scholar 

  • Kumar, R., Srinivas, K., Boiroju, N. K., & Gedam, P. C. (2014). Production performance of maize in India: approaching an inflection point. International Journal of Agricultural and Statistical Sciences, 10, 241–248

    Google Scholar 

  • Leimu, R., & Koricheva, J. (2006). A meta-analysis of genetic correlations between plant resistances to multiple enemies. The American Naturalist, 168, E15–E37

    Article  PubMed  Google Scholar 

  • Marta, B., Szafranska, K., & Posmyk, M. M. (2016). Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Frontiers of Plant Science, 7, 575

    Article  Google Scholar 

  • Mitchell, C., Brennan, R. M., Graham, J., & Karley, A. J. (2016). Plant defense against herbivorous pests: Exploiting resistance and tolerance traits for sustainable crop protection. Frontiers of Plant Science, 7, 1132

    Article  Google Scholar 

  • Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, V. M., Padilla, G., Malvar, R. A., Kallenbach, M., Santiago, R., & Butrón, A. (2018). Maize stem response to long-term attack by Sesamia nonagrioides. Frontiers of Plant Science, 9, 522

    Article  Google Scholar 

  • Rodriguez, V. M., Velasco, P., Cao, A., Santiago, R., Malvar, R. A., & Butrón, A. (2021). Maize resistance to stem borers can be modulated by systemic maize responses to long-term stem tunneling. Frontiers of Plant Science, 11, 627468

    Article  Google Scholar 

  • Sánchez, H. S., & Contreras, A. M. (2017). Chemical plant defense against herbivores. In: Herbivores (Ed. Shields, V.D.C.). IntechOpen. https://doi.org/10.5772/67346

  • Santiago, R., Cao, A., Butrón, A., López-Malvar, A., Rodriguez, V. M., Sandoya, G. V., & Malvar, R. A. (2017). Defensive changes in maize leaves induced by feeding of Mediterranean corn borer larvae. BMC Plant Biology, 17, 44

    Article  PubMed  PubMed Central  Google Scholar 

  • Sau, A. K., & Dhillon, M. K. (2022). Photosynthetic pigments in maize vis-à-vis biological performance and host selection by Sesamia inferens. Indian Journal of Agricultural Sciences, 92(3), 61–65

    Article  Google Scholar 

  • Schwachtje, J., & Baldwin, I. T. (2008). Why does herbivore attack reconfigure primary metabolism? Plant Physiology, 146, 845–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, M. I., Thaler, S. J., & Scott, G. F. (2010). Response of a generalist herbivore Trichoplusia ni to jasmonate-mediated induced defense in tomato. Journal of Chemical Ecology, 36, 490–499

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, K. H., & Marwaha, K. K. (1993). The vistas of maize entomology in India. Kalyani Publishers

    Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic- phosphotungestic acid reagents. American Journal of Enology and Viticulture, 16, 144–158

    CAS  Google Scholar 

  • Smith, C. M., & Clement, S. L. (2012). Molecular bases of plant resistance to arthropods. Annual Review of Entomology, 57, 309–328

    Article  CAS  PubMed  Google Scholar 

  • Soujanya, L. P., Sekhar, J. C., Ratnavathi, C. V., Shobha, E., Karjagi, C. G., Suby, S. B., et al. (2020). Role of soluble, cell wall-bound phenolics, tannin and flavonoid contents in maize resistance to pink stem borer Sesamia inferens Walker. Maydica, 65(1), 1–12.

    Google Scholar 

  • Soujanya, P. L., Sekhar, J. C., Ratnavathi, C. V., Karjagi, C. G., Shobha, E., Suby, S. B. … Rakshit, S. (2021). Induction of cell wall phenolic monomers as part of direct defense response in maize to pink stem borer (Sesamia inferens Walker) and non-insect interactions. Scientific Reports, 11, 14770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taggar, G. K., Gill, R. S., Gupta, A. K., & Singh, S. (2014). Induced changes in the antioxidative compounds of black gram (Vigna mungo (L.) Hepper) genotypes due to infestation by Bemisia tabaci (Gennadius). Journal of Environmental Biology, 35, 1037–1045

    PubMed  Google Scholar 

  • Thorpe, T. A., & Beaudoin-Eagan, L. D. (1985). Tyrosine and Phenylalanine ammonia lyase Activities during shoot Initiation in tobacco callus cultures. Plant Physiology, 78, 438–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivedi, N. (2021). Improved plant resistance by phytomicrobiome community towards biotic and abiotic stresses. In A. Verma, J. K. Saini, A. E. Hesham, & H. B. Singh (Eds.), Phytomicrobiome Interactions and Sustainable Agriculture (pp. 207–216). Wiley

  • War, A. R., Sharma, H. C., Paulraj, M. G., Hussain, B., Buhroo, A. A., War, M. Y. … Sharma, H. C. (2013). Effect of plant secondary metabolites on Helicoverpa armigera. Journal of Pest Science, 86, 399–408

    Article  Google Scholar 

  • Wu, J., & Baldwin, I. T. (2010). New insights into plant responses to attack from insect herbivores. Annual Review of Genetics, 44, 1–24

    Article  CAS  PubMed  Google Scholar 

  • Yele, Y., Dhillon, M. K., Tanwar, A. K., & Kumar, S. (2021). Amino and fatty acids contributing to antibiosis against Chilo partellus (Swinhoe) in maize. Arthropod-Plant Interactions, 15(5), 721–736

    Article  CAS  Google Scholar 

  • Zhao, L. Y., Chen, J. L., Cheng, D. F., Sun, J. R., Liu, Y., & Tian, Z. (2009). Biochemical and molecular characterizations of Sitobion avenae–induced wheat defense responses. Crop Protection, 28, 435–442

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is part of M.Sc. thesis of Mr. Ashok K. Sau. The authors are thankful to the ICAR-Indian Agricultural Research Institute, New Delhi for encouragement, providing necessary facilities and senior research fellowship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh K. Dhillon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sau, A.K., Dhillon, M.K. & Trivedi, N. Activation of antioxidant defense in maize in response to attack by Sesamia inferens (Walker). Phytoparasitica 50, 1043–1058 (2022). https://doi.org/10.1007/s12600-022-00996-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-022-00996-2

Keywords

Navigation