Skip to main content

Advertisement

Log in

BABA-induced resistance: milestones along a 55-year journey

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

β-aminobutyric acid (BABA) has been known as an inducer of disease-resistance since 1963, however, only in the recent two decades an increasing number of reports have been published shedding light on its spectrum of activity, physiological impacts, and mode of action. BABA has been shown to protect about 40 plant species against about 80 pathogens and pests, including a virus, protista, bacteria, oomycetes, fungi, nematodes and arthropods. Interestingly, it is also active against abiotic stress and enhances salt, heat and drought tolerance in several plant species. Although generally regarded as a xenobiotic, there are a few reports that mention its occurrence in plants. BABA-treated plants react faster and in a more robust manner to a stress situation, a phenomenon that has been termed priming. 14C BABA is highly systemic, readily taken up by roots and leaves, and translocate both acropetally and basipetally. No metabolites of BABA are known. BABA is effective as a foliar spray, soil drench and seed treatment. Seeds derived from treated plants may produce primed progeny, making BABA the first agent with transgenerational efficacy. BABA induces numerous biochemical changes in treated plants. Among them are the induction of reactive oxygen species (ROS) and glycolate oxidase (GO) that are tightly linked to defense. ROS scavengers may alleviate the activity of BABA. Interestingly, only the R but not the S enantiomer of BABA primes for resistance. Unfortunately, BABA can also impose growth stress (and phytotoxicity) in some treated plants therefore BABA analogs with reduced stress effects are highly desirable for agricultural use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed, N., Abbasi, M. W., Shaukat, S. S., & Zaki, M. J. (2009). Induced systemic resistance in mung bean plant against root-knot nematode Meloidogyne javanica by dl-β-amino butyric acid. Nematologia Mediterranea, 37, 67–72.

    Google Scholar 

  • Altamiranda, E. A. G., Andreu, A. B., Daleo, G. R., & Olivieri, F. P. (2008). Effect of β-aminobutyric acid (BABA) on protection against Phytophthora infestans throughout the potato crop cycle. Australasian Plant Pathology, 37(4), 421–427. doi:10.1071/ap08033.

    Article  CAS  Google Scholar 

  • Amzalek, E., & Cohen, Y. (2007). Comparative efficacy of systemic acquired resistance-inducing compounds against rust infection in sunflower plants. Phytopathology, 97(2), 179–186. doi:10.1094/phyto-97-2-0179.

    Article  CAS  PubMed  Google Scholar 

  • Andreu, A. B., Guevara, M. G., Wolski, E. A., Daleol, G. R., & Caldiz, D. O. (2006). Enhancement of natural disease resistance in potatoes by chemicals. Pest Management Science, 62(2), 162–170.

    Article  CAS  PubMed  Google Scholar 

  • Anter, A. A., Amin, A. W., Ashoub, A. H., & El-Nuby, A. S. (2014). Evaluation of some chemical substances as inducers for tomato resistance against root-knot nematode, Meloidogyne incognita. Egyptian Journal of Agronematology, 13, 124–145.

    Google Scholar 

  • Anup, C. P., Melvin, P., Shilpa, N., Gandhi, M. N., Jadhav, M., Ali, H., et al. (2015). Proteomic analysis of elicitation of downy mildew disease resistance in pearl millet by seed priming with β-aminobutyric acid and Pseudomonas fluorescens. Journal of Proteomics, 120, 58–74. doi:10.1016/j.jprot.2015.02.013.

    Article  CAS  PubMed  Google Scholar 

  • Baccelli, I., & Mauch-Mani, B. (2016). β -aminobutyric acid priming of plant defense: the role of ABA and other hormones. Plant Molecular Biology, 91(6), 703–711. doi:10.1007/s11103-015-0406-y.

    Article  CAS  PubMed  Google Scholar 

  • Baider, A., & Cohen, Y. (2003). Synergistic interaction between BABA and mancozeb in controlling Phytophthora infestans in potato and tomato and Pseudoperonospora cubensis in cucumber. Phytoparasitica, 31(4), 399–409.

    Article  CAS  Google Scholar 

  • Barilli, E., Sillero, J. C., & Rubiales, D. (2010). Induction of systemic acquired resistance in pea against rust (Uromyces pisi) by exogenous application of biotic and abiotici nducers. Journal of Phytopathology, 158(1), 30–34. doi:10.1111/j.1439-0434.2009.01571.x.

    Article  CAS  Google Scholar 

  • Barilli, E., Rubiales, D., Amalfitano, C., Evidente, A., & Prats, E. (2015). BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. Planta, 242(5), 1095–1106. doi:10.1007/s00425-015-2339-8.

    Article  CAS  PubMed  Google Scholar 

  • Barrado, E., Rodriguez, J. A., & Castrillejo, Y. (2009). Determination of primary amino acids in wines by high performance liquid magneto-chromatography. Talanta, 78(3), 672–675. doi:10.1016/j.talanta.2008.12.023.

    Article  CAS  PubMed  Google Scholar 

  • Baysal, O., Ziya Gursoy, Y., Ornek, H., & Duru, A. (2005). Induction of oxidants in tomato leaves with DL- β-aminobutyric acid (BABA) and infected with Clavibacter michiganensis subp. michiganensis. European Journal of Plant Pathology, 112, 361–369.

    Article  CAS  Google Scholar 

  • Baysal, O., Gursoy, Y. Z., Ornek, H., Cetinel, B., & da Silva, J. A. T. (2007). Enhanced systemic resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato by DL- β -aminobutyric acid under salt stress. Physiologia Plantarum, 129(3), 493–506.

    Article  CAS  Google Scholar 

  • Bengtsson, T., Weighill, D., Proux-Wera, E., Levander, F., Resjo, S., Burra, D. D., et al. (2014). Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. Bmc Genomics, 15. doi:10.1186/1471-2164-15-315.

  • Burra, D. D., Berkowitz, O., Hedley, P. E., Morris, J., Resjo, S., Levander, F., et al. (2014). Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. Bmc Plant Biology, 14. doi:10.1186/s12870-014-0254-y.

  • Cao, S. Q., Ren, G., Jiang, L., Yuan, H. B., & Ma, G. H. (2009). The role of β-aminobutyric acid in enhancing cadmium tolerance in Arabidopsis thaliana. Russian Journal of Plant Physiology, 56(4), 575–579. doi:10.1134/s1021443709040190.

    Article  CAS  Google Scholar 

  • Cao, J. K., Yan, J. Q., Zhao, Y. M., & Jiang, W. B. (2013). Effects of four pre-harvest foliar sprays with β-aminobutyric acid or salicylic acid on the incidence of post-harvest disease and induced defence responses in jujube (Zizyphus jujuba Mill.) fruit after storage. Journal of Horticultural Science & Biotechnology, 88(3), 338–344.

    Article  CAS  Google Scholar 

  • Cao, H. H., Zhang, M., Zhao, H., Zhang, Y., Wang, X. X., Guo, S. S., et al. (2014). Deciphering the mechanism of β-aminobutyric acid-Induced resistance in wheat to the grain aphid, Sitobion avenae. Plos One, 9(3). doi:10.1371/journal.pone.0091768.

  • Castaño Monsalve, J., Ramirez Gil, J. G., Patino Hoyos, L. F., & Gonzalo Morales Osorio, J. (2015). Management alternative for Phytophthora infestans (Mont.) de Bary in Solanum betaceun Cav. mediante by resistance inducers. Revista de Proteccion Vegetal, 30, 204–212.

    Google Scholar 

  • Chamsai, J., Buchenauer, H., Orober, M., & Siegrist, J. (1998). DL-3-aminobutyric acid induces localized cell death, salicylic acid, PR proteins and resistance in tomato and tobacco. In Aussois, France, 1998: 5th International Workshop on Pathogenesis-Related Proteins in Plants Signaling Pathways and Biological Activities.

  • Chamsai, J., Siegrist, J., & Buchenauer, H. (2004). Mode of action of the resistance-inducing 3-aminobutyric acid in tomato roots against Fusarium wilt. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz-Journal of Plant Diseases and Protection, 111(3), 273–291.

    CAS  Google Scholar 

  • Chavan, V., & Kamble, A. (2014). Induction of total phenolics and defence-related enzymes during β-aminobutyric acid-induced resistance in Brassica carinata against Alternaria blight. Archives of Phytopathology and Plant Protection, 47, 2200–2212.

    Article  CAS  Google Scholar 

  • Chinnasri, B., Sipes, B. S., & Schmitt, D. P. (2006). Effects of inducers of systemic acquired resistance on reproduction of Meloidogyne javanica and Rotylenchulus reniformis in pineapple. Journal of Nematology, 38(3), 319–325.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, Y. (1994a). 3-Aminobutyric acid induces systemic resistance against Peronospora tabacina Physiol. Molecular Plant Pathology, 44, 273–288.

    Article  CAS  Google Scholar 

  • Cohen, Y. (1994b). Local and systemic control of Phytophthora infestans in tomato plants by DL-3-amino-n-butanoic acids. Phytopathology, 84, 55–59.

    Article  CAS  Google Scholar 

  • Cohen, Y. (2000). Methods for protecting plants from fungal infection. US Patent 6,075,051.

  • Cohen, Y. (2001). The BABA story of induced resistance. Phytoparasitica, 29(5), 375–378.

    Article  Google Scholar 

  • Cohen, Y. (2002). β-aminobutyric acid-induced resistance against plant pathogens. Plant Disease, 86, 448–457.

    Article  CAS  Google Scholar 

  • Cohen, Y., & Gisi, U. (1994). Systemic translocation of 14C-DL-3-aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Physiological Molecular Plant Pathology, 45, 441–456.

    Article  CAS  Google Scholar 

  • Cohen, Y., Niderman, T., Mosinger, E., & Fluhr, R. (1994). β-aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum Mill.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiology, 104, 59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, Y., Reuveni, M., & Baider, A. (1999). Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopara viticola in grapevines. European Journal of Plant Pathology, 105, 351–361.

    Article  CAS  Google Scholar 

  • Cohen, Y., Korat, M., & Zvi-Tov, D. (2004). Method to protect plants from fungal infection. US Patent 6,692,774 B2.

  • Cohen, Y., Baider, A., Gotlieb, D., & Rubin, A. E. (2007). Control of Bremia lactucae in field-grown lettuce by DL-3-amino-n-butanoic acid (BABA). In U. Niggli, C. Leifert, T. Alfoldi, L. Luck, & H. Willer (Eds.), Improving sustainability in organic and low input food production systems. University of Hohenheim, Germany: Proc. 3rd Intn. Cong. European integrated project ‘Quality Low Input Food’ (QLIF).

  • Cohen, Y., Rubin, A. E., & Kilfin, G. (2010). Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). European Journal of Plant Pathology, 126(4), 553–573. doi:10.1007/s10658-009-9564-6.

    Article  CAS  Google Scholar 

  • Cohen, Y., Rubin, A. E., & Vaknin, M. (2011). Post infection application of DL-3-amino-butyric acid (BABA) induces multiple forms of resistance against Bremia lactucae in lettuce. European Journal of Plant Pathology, 130(1), 13–27. doi:10.1007/s10658-010-9724-8.

    Article  CAS  Google Scholar 

  • Cohen, Y., Vaknin, M., & Ben Naim, Y. (2015). Chemical control of downy mildew in basil caused by Peronospora belbahrii. Phytoparasitica, 43, 381.

    Google Scholar 

  • Conrath, U., Beckers, G. J. M., Langenbach, C. J. G., & Jaskiewicz, M. R. (2015). Priming for enhanced defense. In N. K. VanAlfen (Ed.), Annual Review of Phytopathology, 53, 97–119.

  • Csikász-Krizsics, A., Mátai, A., Nagy, Á., Kovács, S., Végh, B., Werner, J., et al. (2013). BABA (β-aminobutyric acid) induced resistance against grey mould and virus infection in grapevine. IOBC-WPRS Bulletin, 89, 429–432.

    Google Scholar 

  • David, R. (1997). The influence of activated plant defense reaction on colonization of Glomus intraradices in tobacco roots. Thesis submitted to Bar-Ilan University,Israel.

  • Du, Y. L., Wang, Z. Y., Fan, J. W., Turner, N. C., Wang, T., & Li, F. M. (2012). β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying. Journal of Experimental Botany, 63(13), 4849–4860. doi:10.1093/jxb/ers164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EL-Metwally, M. A., Tarabih, M. E., & El-Eryan, E. E. (2014). Effect of application of β -aminobutyric acid on maintaining quality of crimson seedless grape and controlling postharvest diseases under cold storage condition. Plant Pathology Journal, 3, 139–151.

    Google Scholar 

  • Eschen-Lippold, L., Altmann, S., & Rosahl, S. (2010). DL-β-aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. Molecular Plant-Microbe Interactions, 23(5), 585–592. doi:10.1094/mpmi-23-5-0585.

    Article  CAS  PubMed  Google Scholar 

  • Falk, A., Feys, B. J., Frost, L. N., Jones, J. D. G., Daniels, M. J., & Parker, J. E. (1999). EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proceedings of the National Academy of Sciences of the United States of America, 96(6), 3292–3297. doi:10.1073/pnas.96.6.3292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farahani, A. S., Taghavi, S. M., Afsharifar, A., & Niazi, A. (2016). Effect of β-aminobutyric acid on resistance of tomato against Pectobacteriumcarotovorum subsp. carotovorum. Journal of Plant Diseases and Protection, 123, 155–161.

    Article  Google Scholar 

  • Fatemy, S., Moslemi, F., & Bernard, F. (2012). Seed treatment and soil drench with dl-β-amino butyric acid for the suppression of Meloidogyne javanica on tomato. Acta Physiologiae Plantarum, 34(6), 2311–2317. doi:10.1007/s11738-012-1032-9.

    Article  CAS  Google Scholar 

  • Fischer, M. J. C., Farine, S., Chong, J., Guerlain, P., & Bertsch, C. (2009). The direct toxicity of BABA against grapevine ecosystem organisms. Crop Protection, 28(8), 710–712. doi:10.1016/j.cropro.2009.03.014.

    Article  CAS  Google Scholar 

  • Flors, V., Ton, J., van Doorn, R., Jakab, G., Garcia-Agustin, P., & Mauch-Mani, B. (2008). Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant Journal, 54(1), 81–92.

    Article  CAS  PubMed  Google Scholar 

  • Gamliel, A., & Katan, J. (1992). Influence of seed and root exudates on fluorescent pseudomonas and fungi in solarized soil. Phytopathology, 82, 320–327.

    Article  Google Scholar 

  • Greyerbiehl, J. A., & Hammerschmidt, R. (1998). Induced resistance against Fusarium sambucinum in potato tuber tissue. Phytopathology, 88, S34.

    Google Scholar 

  • Gur, L. (2013). Etiology and control of Alternaria blotch caused by Alternaria alternata apple pathotype on Cripps Pink apple fruits. M.SC Thesis submitted to Bar-Ilan University, Israel.

  • Gur, L., Reuveni, M., Stern, R., & Cohen, Y. (2013). Integrated control of Alternaria blotch on cv. ‘Cripps Pink’ apple fruits. Phytoparasitica, 41, 458–459.

    Google Scholar 

  • Hamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J. M., & Mauch-Mani, B. (2005). β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Molecular Plant-Microbe Interactions, 18(8), 819–829. doi:10.1094/Mpmi-18-0819.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, M. A. E., & Abo-Elyousr, K. A. M. (2013). Activation of tomato plant defence responses against bacterial wilt caused by Ralstonia solanacearum using DL-3-aminobutyric acid (BABA). European Journal of Plant Pathology, 136(1), 145–157. doi:10.1007/s10658-012-0149-4.

    Article  CAS  Google Scholar 

  • Hassan, M. A. E., & Buchenauer, H. (2007). Induction of resistance to fire blight in apple by acibenzolar-S-methyl and DL-3-aminobutyric acid. Journal of Plant Diseases and Protection, 114(4), 151–158.

    Article  CAS  Google Scholar 

  • Hodge, S., Thompson, G. A., & Powell, G. (2005). Application of DL-β-aminobutyric acid (BABA) as a root drench to legumes inhibits the growth and reproduction of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Bulletin of Entomological Research, 95(5), 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Hodge, S., Pope, T. W., Holaschke, M., & Powell, G. (2006). The effect of b-aminobutyric acid on the growth of herbivorous insects feeding on Brassicaceae. Annals of Applied Biology, 148(3), 223–229.

    Article  CAS  Google Scholar 

  • Hodge, S., Ward, J. L., Galster, A. M., Beale, M. H., & Powell, G. (2011). The effects of a plant defence priming compound, β-aminobutyric acid, on multitrophic interactions with an insect herbivore and a hymenopterous parasitoid. Biocontrol, 56(5), 699–711. doi:10.1007/s10526-011-9344-z.

    Article  CAS  Google Scholar 

  • Hong, J. K., Hwang, B. K., & Kim, C. H. (1999). Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL-β-amino-n-butyric acid. Journal of Phytopathology, 147(4), 193–198.

    Article  CAS  Google Scholar 

  • Hossain, Z., Makino, T., & Komatsu, S. (2012). Proteomic study of β-aminobutyric acid-mediated cadmium stress alleviation in soybean. Journal of Proteomics, 75, 4151–4164.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, B. K., Sunwoo, J. Y., Kim, Y. J., & Kim, B. S. (1997). Accumulation of β-1,3-glucanase and chitinase isoforms, and salicylic acid in the DL-β-amino-n-butyric acid-induced resistance response of pepper stems to Phytophthora capsici. Physiological and Molecular Plant Pathology, 51(5), 305–322.

    Article  CAS  Google Scholar 

  • Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Metraux, J. P., et al. (2001). β -aminobutyric acid-induced resistance in plants. European Journal of Plant Pathology, 107, 29–37.

    Article  CAS  Google Scholar 

  • Jakab, G., Manrique, A., Zimmerli, L., Metraux, J. P., & Mauch-Mani, B. (2003). Molecular characterization of a novel lipase-like pathogen-inducible gene family of Arabidopsis. Plant Physiology, 132(4), 2230–2239. doi:10.1104/pp.103.025312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakab, G., Ton, J., Flors, V., Zimmerli, L., Metraux, J. P., & Mauch-Mani, B. (2005). Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiology, 139(1), 267–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeun, Y. C., & Buchenauer, H. (2001). Infection structures and localization of the pathogenesis- related protein AP24 in leaves of tomato plants exhibiting systemic acquired resistance against Phytophthora infestans after pre-treatment with 3-aminobutyric acid or tobacco necrosis virus. Journal of Phytopathology, 149(3–4), 141–153.

    Article  CAS  Google Scholar 

  • Jeun, Y. C., & Park, E. W. (2003). Ultrastructures of the loaves of cucumber plane treated with DL-3-aminobutyric acid at the vascular bundle and the penetration sites after inoculation with Colletotrichum orbiculare. Korean Society of Plant Pathology, 19, 85–91.

    Article  Google Scholar 

  • Jeun, Y. C., Siegrist, J., & Buchenauer, H. (2000). Biochemical and cytological studies on mechanisms of systemically induced resistance to Phytophthora infestans in tomato plants. Journal of Phytopathology, 148(6), 129–140.

    CAS  Google Scholar 

  • Jeun, Y. C., Park, K. S., Kim, C. H., Fowler, W. D., & Kloepper, J. W. (2004). Cytological observations of cucumber plants during induced resistance elicited by rhizobacteria. Biological Control, 29(1), 34–42. doi:10.1016/s1049-9644(03)00082-3.

    Article  Google Scholar 

  • Ji, H. L., Kyndt, T., He, W., Vanholme, B., & Gheysen, G. (2015). β-Aminobutyric acid-induced resistance against root-knot nematodes in rice is based on increased basal defense. Molecular Plant-Microbe Interactions, 28(5), 519–533. doi:10.1094/mpmi-09-14-0260-r.

    Article  CAS  PubMed  Google Scholar 

  • Jirage, D., Tootle, T. L., Reuber, T. L., Frost, L. N., Feys, B. J., Parker, J. E., et al. (1999). Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 96(23), 13583–13588. doi:10.1073/pnas.96.23.13583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jisha, K. C., & Puthur, J. T. (2016). Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma, 253(2), 277–289. doi:10.1007/s00709-015-0804-7.

    Article  CAS  PubMed  Google Scholar 

  • Kamble, A., & Bhargava, S. (2007). β-aminobutyric acid-induced resistance in Brassica juncea against the necrotrophic pathogen Alternaria brassicae. Journal of Phytopathology, 155(4), 255.

    Article  CAS  Google Scholar 

  • Kamble, A., Koopmann, B., & von Tiedemann, A. (2013). Induced resistance to Verticillium longisporum in Brassica napus by β-aminobutyric acid. Plant Pathology, 62(3), 552–561. doi:10.1111/j.1365-3059.2012.02669.x.

    Article  CAS  Google Scholar 

  • Karmakar, N. C., Ghosh, R., & Purkayastha, R. P. (2003). Plant defence activators inducing systemic resistance in Zingiber officinale Rosc. against Pythium aphanidermatum (Edson) Fitz. Indian Journal of Biotechnology, 2, 591–595.

    CAS  Google Scholar 

  • Kim, Y. C., Kim, Y. H., Lee, Y. H., Lee, S. W., Chae, Y. S., Kang, H. K., et al. (2013). β-Amino-n-butyric acid regulates seedling growth and disease resistance of kimchi cabbage. Plant Pathology Journal, 29(3), 305–316. doi:10.5423/ppj.oa.12.2012.0191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koen, E., Trapet, P., Brule, D., Kulik, A., Klinguer, A., Atauri-Miranda, L., et al. (2014). β-Aminobutyric acid (BABA)-induced resistance in Arabidopsis thaliana: link with iron homeostasis. Molecular Plant-Microbe Interactions, 27(11), 1226–1240. doi:10.1094/mpmi-05-14-0142-r.

    Article  CAS  PubMed  Google Scholar 

  • Lankinen, A., Abreha, K. B., Alexandersson, E., Andersson, S., & Andreasson, E. (2016). Nongenetic inheritance of induced resistance in a wild annual plant. Phytopathology, in press.

  • Lee, Y. K., Hong, J. K., Hippe-Sanwald, S., & Hwang, B. K. (2000). Histological and ultrastructural comparisons of compatible, incompatible and DL-β-amino-n-butyric acid-induced resistance responses of pepper stems to Phytophthora capsici. Physiological and Molecular Plant Pathology, 57(6), 269–280.

    Article  CAS  Google Scholar 

  • Li, J. J., Zingen-Sell, I., & Buchenauer, H. (1996). Induction of resistance of cotton plants to Verticillium wilt and of tomato plants to Fusarium wilt by 3-aminobutyric acid and methyl jasmonate. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz-Journal of Plant Diseases and Protection, 103(3), 288–299.

    CAS  Google Scholar 

  • Li, J. Y., Trivedi, P., & Wang, N. (2016). Field evaluation of plant defense inducers for the control of citrus huanglongbing. Phytopathology, 106(1), 37–46. doi:10.1094/phyto-08-15-0196-r.

    Article  PubMed  Google Scholar 

  • Liljeroth, E., Bengtsson, T., Wiik, L., & Andreasson, E. (2010). Induced resistance in potato to Phytphthora infestans- effects of BABA in greenhouse and field tests with different potato varieties. European Journal of Plant Pathology, 127(2), 171–183. doi:10.1007/s10658-010-9582-4.

    Article  CAS  Google Scholar 

  • Liu, T. W., Jiang, X. W., Shi, W. L., Chen, J., Pei, Z. M., & Zheng, H. L. (2011). Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain. Proteomics, 11(10), 2079–2094. doi:10.1002/pmic.201000307.

    Article  CAS  PubMed  Google Scholar 

  • Lotan, T., & Fluhr, R. (1990). Xylanase, a novel elicitor of pathogenesis-related proteins in tobacco, uses a non-ethylene pathway for induction. Plant Physiology, 93, 811–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V., & Ton, J. (2012). Next-generation systemic acquired resistance. Plant Physiology, 158(2), 844–853. doi:10.1104/pp.111.187468.

    Article  CAS  PubMed  Google Scholar 

  • Luna, E., van Hulten, M., Zhang, Y. H., Berkowitz, O., Lopez, A., Petriacq, P., et al. (2014a). Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nature Chemical Biology, 10(6), 450–456. doi:10.1038/nchembio.1520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna, E., Lopez, A., Kooiman, J., & Ton, J. (2014a). Role of NPR1 and KYP in long-lasting induced resistance by β-aminobutyric acid. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00184.

  • Luna, E., Beardon, E., Ravnskov, S., Scholes, J., & Ton, J. (2016). Optimizing chemically induced resistance in tomato against Botrytis cinerea. Plant Disease, 100(4), 704–710. doi:10.1094/pdis-03-15-0347-re.

    Article  Google Scholar 

  • Macarisin, D., Wisniewski, M. E., Bassett, C., & Thannhauser, T. W. (2009). Proteomic analysis of β-aminobutyric acid priming and abscisic acid - induction of drought resistance in crabapple (Malus pumila): effect on general metabolism, the phenylpropanoid pathway and cell wall enzymes. Plant, Cell and Environment, 32(11), 1612–1631. doi:10.1111/j.1365-3040.2009.02025.x.

    Article  CAS  Google Scholar 

  • MacLennan, D. H., Kuc, J., & Williams, E. B. (1963). Chemotherapy of the apple scab disease with butyric acid derivatives. Phytopathology, 53(11), 1261–1266.

    CAS  Google Scholar 

  • Maldonado, M. L. H., Falloon, R. E., Butler, R. C., Conner, A. J., & Bulman, S. R. (2015). Resistance to Spongospora subterranea induced in potato by the elicitor β-aminobutyric acid. Australasian Plant Pathology, 44, 445–453.

    Article  CAS  Google Scholar 

  • Marcucci, E., Aleandri, M. P., Chilosi, G., & Magro, P. (2010). Induced resistance by β-Aminobutyric acid in artichoke against white mould caused by Sclerotinia sclerotiorum. Journal of Phytopathology, 158(10), 659–667. doi:10.1111/j.1439-0434.2010.01677.x.

    Article  CAS  Google Scholar 

  • Martinez-Aguilar, K., Ramirez-Carrasco, G., Hernandez-Chavez, J. L., Barraza, A., & Alvarez-Venegas, R. (2016). Use of BABA and INA as activators of a primed state in the common bean (Phaseolus vulgaris L.). Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00653.

  • Maymoune, A., Adeline, P., Marie, T., Sophie, G., Sophie, C., Catherine, L., et al. (2015). Impact of abiotic stresses on the protection efficacy of defence elicitors and on metabolic regulation in tomato leaves infected by Botrytis cinerea. European Journal of Plant Pathology, 142(2), 223–237. doi:10.1007/s10658-015-0606-y.

    Article  CAS  Google Scholar 

  • Melvin, P., Prabhu, S. A., Veena, M., Shailasree, S., Petersen, M., Mundy, J., et al. (2015). The pearl millet mitogen-activated protein kinase PgMPK4 is involved in responses to downy mildew infection and in jasmonic- and salicylic acid-mediated defense. Plant Molecular Biology, 87(3), 287–302. doi:10.1007/s11103-014-0276-8.

    Article  CAS  PubMed  Google Scholar 

  • Mersha, Z., Zhang, S., Fu, Y., Mo, X., Raid, R. N., & Hau, B. (2013). Efficacy of acibenzolar-S-methyl and β-aminobutyric acid for control of downy mildew in greenhouse grown basil and peroxidase activity in response to treatment with these compounds. Journal of Phytopathology, 161(3), 154–164. doi:10.1111/jph.12045.

    Article  CAS  Google Scholar 

  • Mongae, A., & Moleleki, L. (2015). The effect of β-aminobutyric acid (BABA) on root knot nematode and soft rot pathogen disease complexes in Solanum tuberosum plants. European Journal of Plant Pathology, 142(1), 117–124. doi:10.1007/s10658-015-0596-9.

    Article  CAS  Google Scholar 

  • Moricova, P., Stary, T., Pecinkova, M., Lochman, J., Kubienova, L., Mieslerova, B., et al. (2014). Oligandrin and β-aminobutyric acid-induced resistance to Oidium neolycopersici in tomato plants. Febs Journal, 281, 753–754.

    Google Scholar 

  • Mostek, A., Borner, A., & Weidner, S. (2016). Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley. Plant Physiology and Biochemistry, 99, 150–161. doi:10.1016/j.plaphy.2015.12.007.

    Article  CAS  PubMed  Google Scholar 

  • Oka, Y., & Cohen, Y. (2001). Induced resistance to cyst and root-knot nematodes in cereals by DL-b-amino-n-butyric acid. European Journal of Plant Pathology, 107(2), 219–227.

    Article  CAS  Google Scholar 

  • Oka, Y., Cohen, Y., & Spiegel, Y. (1999). Local and systemic induced resistance to the root-knot nematode in tomato by DL- β-amino-n-butyric acid. Phytopathology, 89, 1138–1143.

    Article  CAS  PubMed  Google Scholar 

  • Oka, Y., Spiegel, Y., & Cohen, Y. (2001). Methods and compositions to protect crops against plant parasitic nematodes. US Patent 6,201,023 B1.

  • Olivieri, F. P., Lobato, M. C., Altamiranda, E., Daleo, G. R., Huarte, M., Guevara, M. G., et al. (2009). BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusarium solani. European Journal of Plant Pathology, 123(1), 47–56. doi:10.1007/s10658-008-9340-z.

    Article  CAS  Google Scholar 

  • Ovadia, A., Biton, R., Cohen, Y., Katzir, N., & Paris, H. S. (2000). Induced resistance to downy mildew and Fusarium wilt in cucurbits. In Proceedings of CUCURBITACEAE 2000. The 7 th EUCARPIA Meeting on Cucurbit Genetics and Breeding (pp. 55–59). Acta Horticulture.

  • Pajot, E., & Silue, D. (2005). Evidence that DL-3-aminobutyric acid and acibenzolar-S-methyl induce resistance against bacterial head rot disease of broccoli. Pest Management Science, 61(11), 1110–1114. doi:10.1002/ps.1103.

    Article  CAS  PubMed  Google Scholar 

  • Pajot, E., Le Corre, D., & Silue, D. (2001). Phytogard(R) and DL- β-amino butyric acid (BABA) induce resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa L). European Journal of Plant Pathology, 107(9), 861–869.

    Article  CAS  Google Scholar 

  • Panebianco, S., Vitale, A., Platania, C., Restuccia, C., Polizzi, G., & Cirvilleri, G. (2014). Postharvest efficacy of resistance inducers for the control of green mold on important Sicilian citrus varieties. Journal of Plant Diseases and Protection, 121(4), 177–183.

    Article  Google Scholar 

  • Papavizas, G. C., & Davey, C. B. (1963). Effect of amino compounds and related substances lacking sulfur on Aphanomyces root rot of peas. Phytopathology, 53, 116–122.

    CAS  Google Scholar 

  • Pastor, V., Luna, E., Ton, J., Cerezo, M., Garcia-Agustin, P., & Flors, V. (2013). Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in Arabidopsis. Molecular Plant-Microbe Interactions, 26(11), 1334–1344. doi:10.1094/mpmi-04-13-0117-r.

    Article  CAS  PubMed  Google Scholar 

  • Pfautsch, S., Gessler, A., Adams, M. A., & Rennenberg, H. (2009). Using amino-nitrogen pools and fluxes to identify contributions of understory Acacia spp. to overstory Eucalyptus regnans and stand nitrogen uptake in temperate Australia. New Phytologist, 183(4), 1097–1113. doi:10.1111/j.1469-8137.2009.02909.x.

    Article  CAS  PubMed  Google Scholar 

  • Philippe, R., Ferreol, B., Sophie, A., & Marie-Noelle, B. (2016). DL- β -aminobutyric acid application negatively affects reproduction and larval development of the rosy apple aphid, Dysaphis plantaginea, on apple. Entomologia Experimentalis et Applicata, 159, 46–53.

    Article  CAS  Google Scholar 

  • Piekna-Grochala, J., & Kepczynska, E. (2013). Induction of resistance against pathogens by β -aminobutyric acid. Acta Physiologiae Plantarum, 35, 1735–1748.

    Article  CAS  Google Scholar 

  • Polyakovskii, S. A., Kravchuk, Z. N., & Dmitriev, A. P. (2008). Mechanism of action of the plant resistance inducer β-aminobutyric acid in Allium cepa. Cytology and Genetics, 42(6), 369–372. doi:10.3103/s0095452708060029.

    Article  Google Scholar 

  • Porat, R., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., et al. (2003). Induction of resistance to Penicillium digitatum in grapefruit by b-aminobutyric acid. European Journal of Plant Pathology, 109(9), 901–907.

    Article  CAS  Google Scholar 

  • Po-Wen, C., Singh, P., & Zimmerli, L. (2013). Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Molecular Plant Pathology, 14, 58–70. doi:10.1111/j.1364-3703.2012.00827.x.

    Article  CAS  PubMed  Google Scholar 

  • Quero, A., Fliniaux, O., Elboutachfaiti, R., Petit, E., Guillot, X., Hawkins, S., et al. (2015). β-Aminobutyric acid increases drought tolerance and reorganizes solute content and water homeostasis in flax (Linum usitatissimum). Metabolomics, 11(5), 1363–1375. doi:10.1007/s11306-015-0792-9.

    Article  CAS  Google Scholar 

  • Rajaei, P., & Mohamadi, N. (2013). Effect of β-aminobutyric acid (BABA) on enzymatic and non-enzymatic antioxidants of Brassica napus L. under drought stress. International Journal of Biosciences, 3, 41–47.

    Article  CAS  Google Scholar 

  • Reuveni, M., Zahavi, T., & Cohen, Y. (2001). Controlling downy mildew (Plasmopara viticola) in field-grown grapevine with b-aminobutyric acid (BABA). Phytoparasitica, 29(2), 125–133.

    Article  CAS  Google Scholar 

  • Reuveni, M., Sheglov, D., & Cohen, Y. (2003). Control of moldy-core decay in apple fruits by β-aminobutyric acids and potassium phosphites. Plant Disease, 87(8), 933–936.

    Article  CAS  Google Scholar 

  • Roylawar, P., Panda, S., & Kamble, A. (2015). Comparative analysis of BABA and Piriformospora indica mediated priming of defence-related genes in tomato against early blight. Physiological and Molecular Plant Pathology, 91, 88–95. doi:10.1016/j.pmpp.2015.06.004.

    Article  CAS  Google Scholar 

  • Sahebani, N., & Hadavi, N. (2009). Induction of H2O2 and related enzymes in tomato roots infected with root knot nematode (M. javanica) by several chemical and microbial elicitors. Biocontrol Science and Technology, 19(3), 301–313. doi:10.1080/09583150902752012.

    Article  Google Scholar 

  • Sahebani, N., Hadavi, N. S., & Zade, F. O. (2011). The effects of β-amino-butyric acid on resistance of cucumber against root-knot nematode, Meloidogyne javanica. Acta Physiologiae Plantarum, 33(2), 443–450. doi:10.1007/s11738-010-0564-0.

    Article  CAS  Google Scholar 

  • Sang, M. K., Kim, E. N., Han, G. D., Kwack, M. S., Jeun, Y. C., & Kim, K. D. (2014). Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology, 104(8), 834–842. doi:10.1094/phyto-11-13-0305-r.

    CAS  PubMed  Google Scholar 

  • Sasek, V., Novakova, M., Dobrev, P. I., Valentova, O., & Burketova, L. (2012). β-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect? European Journal of Plant Pathology, 133(1), 279–289. doi:10.1007/s10658-011-9897-9.

    Article  CAS  Google Scholar 

  • Shailasree, S., & Melvin, P. (2015). β-amino butyric acid - resistance inducing agent in pearl millet. Plant Biochemistry & Physiology Journal, 2, 144–147.

    Google Scholar 

  • Shailasree, S., Sarosh, B. R., Vasanthi, N. S., & Shetty, H. S. (2001). Seed treatment with β-aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola. Pest Management Science, 57(8), 721–728.

    Article  CAS  PubMed  Google Scholar 

  • Shailasree, S., Ramachandra, K. K., & Shetty, S. H. (2007). β-amino butyric acid-induced resistance in pearl millet to downy mildew is associated with accumulation of defence-related proteins. Australasian Plant Pathology, 36(2), 204–211. doi:10.1071/ap06093.

    Article  CAS  Google Scholar 

  • Sharifi-Sirchi, G. R., Beheshti, B., Hosseinipour, A., & Mansouri, M. (2011). Priming against Asiatic citrus canker and monitoring of PR genes expression during resistance induction. African Journal of Biotechnology, 10(19), 3818–3823.

    CAS  Google Scholar 

  • Shaw, A. K., Bhardwaj, P. K., Supriya, G., Sankhajit, R., Suman, S., Sherpa, A. R., et al. (2016). β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.). Environmental Science and Pollution Research, 23, 2437–2453.

    Article  CAS  PubMed  Google Scholar 

  • Siegrist, J., Orober, M., & Buchenauer, H. (2000). β-aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiological and Molecular Plant Pathology, 56(3), 95–106.

    Article  CAS  Google Scholar 

  • Silue, D., Pajot, E., & Cohen, Y. (2002). Induction of resistance to downy mildew (Peronospora parasitica) in cauliflower by DL- β -amino-n-butanoic acid (BABA). Plant Pathology, 51(1), 97–102.

    Article  CAS  Google Scholar 

  • Slaughter, A. R., Hamiduzzaman, M. M., Gindro, K., Neuhaus, J. M., & Mauch-Mani, B. (2008). β-aminobutyric acid-induced resistance in grapevine against downy mildew: involvement of pterostilbene. European Journal of Plant Pathology, 122(1), 185–195. doi:10.1007/s10658-008-9285-2.

    Article  CAS  Google Scholar 

  • Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B., & Mauch-Mani, B. (2012). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiology, 158, 835–843.

    Article  CAS  PubMed  Google Scholar 

  • Sos-Hegedus, A., Juhasz, Z., Poor, P., Kondrak, M., Antal, F., Tari, I., et al. (2014). Soil drench treatment with β-aminobutyric acid increases drought tolerance of potato. Plos One, 9(12). doi:10.1371/journal.pone.0114297.

  • Stamler, R. A., Holguin, O., Dungan, B., Schaub, T., Sanogo, S., Goldberg, N., et al. (2015). BABA and Phytophthora nicotianae induce resistance to Phytophthora capsici in chile pepper (Capsicum annuum). Plos One, 10(5). doi:10.1371/journal.pone.0128327.

  • Sunwoo, J. Y., Lee, Y. K., & Hwang, B. K. (1996). Induced resistance against Phytophthora capsici in pepper plants in response to DL-b-amino-n-butyric acid. European Journal of Plant Pathology, 102, 663–670.

    Article  CAS  Google Scholar 

  • Szalontai, B., Stranczinger, S., Palfalvi, G., Mauch-Mani, B., & Jakab, G. (2012). The taxon-specific paralogs of grapevine PRLIP genes are highly induced upon powdery mildew infection. Journal of Plant Physiology, 169(17), 1767–1775. doi:10.1016/j.jplph.2012.07.010.

    Article  CAS  PubMed  Google Scholar 

  • Taler, D., Galperin, M., Benjamin, I., Cohen, Y., & Kenigsbuch, D. (2004). Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell, 16(1), 172–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavallali, V., Karimi, S., Mohammadi, S., & Hojati, S. (2008). Effects of β -aminobutyric acid on the induction of resistance to Penicillium italicum. World Applied Sciences Journal, (5), 345–351.

  • Thevenet, D., Pastor, V., Baccelli, I., Balmer, A., Vallat, A., Neier, R., Glauser, G., & Mauch-Mani, B. (2016). The priming molecule β-aminobutyric acid is naturally present in plants 1 and is induced by stress. New Phytologist, (accepted).

  • Tiwari, S., Meyer, W. L., & Stelinski, L. L. (2013). Induced resistance against the Asian citrus psyllid, Diaphorina citri, by β-aminobutyric acid in citrus. Bulletin of Entomological Research, 103(5), 592–600. doi:10.1017/s0007485313000229.

    Article  CAS  PubMed  Google Scholar 

  • Ton, J., & Mauch-Mani, B. (2004). b-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant Journal, 38(1), 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., et al. (2005). Dissecting the b-aminobutyric acid-induced priming phenomenon in arabidopsis. Plant Cell, 17(3), 987–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toquin, V., Jakab, G., Maeder, M. N., & Mauch-Mani, B. (2002). β-aminobutyric acid as a useful tool to dissect the priming phenomenon in induced resistance. In B. Mauch-Mani, & A. Schmitt (Eds.), Induced Resistance in Plants against Insects and Diseases (Vol. 2002.). IOBC/wprs Bulletin.

  • Tosi, L., Luigetti, R., & Zazzerini, A. (1998). Induced resistance against Plasmopara helianthi in sunflower plants by DL-β-amino-n-butyric acid. Journal of Phytopathology, 146(5–6), 295–299.

    Article  CAS  Google Scholar 

  • Tworkoski, T., Wisniewski, M., & Artlip, T. (2009). Application of BABA and s-ABA for drought resistance in apple. Journal of Applied Horticulture (Lucknow), 13, 85–90.

    Google Scholar 

  • Vaknin, M. (2016). Genetic resistance and induced resistance against Bremia lactucae in lettuce: microscopy and mechanism. PhD Thesis submitted to Bar-Ilan University, Israel.

  • Van Andel, O. M. (1958). Investigations on plant chemotherapy II. Influence of amino acids on the relation plant-pathogen. Tijdschrift der Planteziekten, 64, 307–327.

    Google Scholar 

  • Van der Ent, S., Van Hulten, M., Pozo, M. J., Czechowski, T., Udvardi, M. K., Pieterse, C. M. J., et al. (2009). Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation. New Phytologist, 183(2), 419–431. doi:10.1111/j.1469-8137.2009.02851.x.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, W., & Buchenauer, H. (1997). Enhancement of biological control by combination of antagonistic fluorescent Pseudomonas strains and resistance inducers against damping off and powdery mildew in cucumber. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz-Journal of Plant Diseases and Protection, 104(3), 272–280.

    Google Scholar 

  • Walters, D. R., Havis, N. D., Paterson, L., Taylor, J., Walsh, D. J., & Sablou, C. (2014). Control of foliar pathogens of spring barley using a combination of resistance elicitors. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00241.

  • Walz, A., & Simon, O. (2009). β-Aminobutyric acid-induced resistance in cucumber against biotrophic and necrotrophic pathogens. J. Phytopathol., 157(6), 356–361. doi:10.1111/j.1439-0434.2008.01502.x.

    Article  CAS  Google Scholar 

  • Wang, L., Jin, P., Wang, J., Jiang, L. L., Shan, T. M., & Zheng, Y. H. (2015). Effect of β-aminobutyric acid on cell wall modification and senescence in sweet cherry during storage at 20 degrees C. Food Chemistry, 175, 471–477. doi:10.1016/j.foodchem.2014.12.011.

    Article  CAS  PubMed  Google Scholar 

  • Wang, K., Liao, Y., Xiong, Q., Kan, J., Cao, S., & Zheng, Y. (2016). Induction of direct or priming resistance against Botrytis cinerea in strawberries by β-aminobutyric acid and their effects on sucrose metabolism. Journal of Agricultural and Food Chemistry, 64(29), 5855–5865. doi:10.1021/acs.jafc.6b00947.

    Article  CAS  PubMed  Google Scholar 

  • Worrall, D., Holroyd, G. H., Moore, J. P., Glowacz, M., Croft, P., Taylor, J. E., et al. (2012). Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytologist, 193(3), 770–778. doi:10.1111/j.1469-8137.2011.03987.x.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C. C., Singh, P., Chen, M. C., & Zimmerli, L. (2010). L-Glutamine inhibits β -aminobutyric acid-induced stress resistance and priming in Arabidopsis. Journal of Experimental Botany, 61, 995–1002.

    Article  CAS  PubMed  Google Scholar 

  • Yan, J., Yuan, S., Wang, C., Yue, D., Xin, Y., Cao, J., et al. (2015). Enhanced resistance of jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit against postharvest Alternaria rot by β -aminobutyric acid dipping. Scientia Horticulturae, 186, 108–114.

    Article  CAS  Google Scholar 

  • Yin, Y., Li, Y. C., Bi, Y., Chen, S. J., Li, Y. C., Yuan, L., et al. (2010). Postharvest Treatment with β-Aminobutyric acid induces resistance against dry rot caused by Fusarium sulphureum in potato tuber. Agricultural Sciences in China, 9(9), 1372–1380. doi:10.1016/s1671-2927(09)60228-5.

    Article  CAS  Google Scholar 

  • Yun, H. K., Yi, S. Y., Yu, S. H., & Choi, D. (1999). Cloning of a pathogenesis-related protein-1 gene from Nicotiana glutinosa L and its salicylic acid-independent induction by copper and β-aminobutyric acid. Journal of Plant Physiology, 154(3), 327–333.

    Article  CAS  Google Scholar 

  • Zeighaminejad, R., Sharifi-Sirchi, G. R., Mohamadi, H., & Aminai, M. M. (2016). Induction of resistance against powdery mildew by β-aminobutyric acid in squash. Journal of Applied Botany and Food Quality, 89, 176–182. doi:10.5073/jabfq.2016.089.022.

    Google Scholar 

  • Zhang, S., Reddy, M. S., Kokalis-Burelle, N., Wells, L. W., Nightengale, S. P., & Kloepper, J. W. (2001). Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth-promoting rhizobacteria and chemical elicitors. Plant Disease, 85(8), 879–884.

    Article  CAS  Google Scholar 

  • Zhang, C. W., Jiamin, Z., Jiaguo, H., & Chengjie, W. G. (2011). Effects of β -aminobutyric acid on control of postharvest blue mould of apple fruit and its possible mechanisms of action. Postharvest Biology and Technology, 61, 145–151.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhou, H., Yuan, Z., Zhang, C., & Wen, X. (2013a). Control effects and mechanisms of β-aminobutyric acid and chitosan on postharvest blue mold of red Fuji apple. [Chinese]. Journal of Northwest A & F University - Natural Science Edition, 41, 149–156.

    CAS  Google Scholar 

  • Zhang, Z., Yang, D., Yang, B., Gao, Z., Li, M., Jiang, Y., et al. (2013b). β-aminobutyric acid induces resistance of mango fruit to postharvest anthracnose caused by Colletotrichum gloeosporioides and enhances activity of fruit defense mechanisms. Scientia Horticulturae, 160, 78–84.

    Article  CAS  Google Scholar 

  • Zhong, Y. P., Wang, B., Yan, J. H., Cheng, L. J., Yao, L. M., Xiao, L., et al. (2014). DL-β-Aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae). Plos One, 9(1). doi:10.1371/journal.pone.0085142.

  • Zimmerli, L., Jakab, C., Metraux, J. P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12920–12925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerli, L., Metraux, J. P., & Mauch-Mani, B. (2001). β-aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiology, 126(2), 517–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerli, L., Hou, B. H., Tsai, C. H., Jakab, G., Mauch-Mani, B., & Somerville, S. (2008). The xenobiotic β-aminobutyric acid enhances Arabidopsis thermotolerance. Plant Journal, 53(1), 144–156.

    Article  CAS  PubMed  Google Scholar 

  • Zlotek, U., Szymanowska, U., Karas, M., & Swieca, M. (2015). Antioxidative and anti-inflammatory potential of phenolics from purple basil (Ocimum basilicum L.) leaves induced by jasmonic, arachidonic and β -aminobutyric acid elicitation. Food Science & Technology, 51, 163–170.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigal Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, Y., Vaknin, M. & Mauch-Mani, B. BABA-induced resistance: milestones along a 55-year journey. Phytoparasitica 44, 513–538 (2016). https://doi.org/10.1007/s12600-016-0546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-016-0546-x

Keywords

Navigation