Skip to main content
Log in

FeNi Prussian blue analogues on highly graphitized carbon nanosheets as efficient glucose sensors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Meeting the continuous glucose monitoring requirements of individuals necessitates the research and development of sensors with high sensitivity and stability. In this study, a straightforward strategy was proposed for synthesizing ultra-thin oxygen-rich graphitized carbon nanosheets (denoted as GCS-O). These nanosheets are obtained by calcining a topologically two-dimensional indium-based coordination polymer. Subsequently, the growth of FeNi Prussian blue analogue (PBA) on GCS-O effectively introduces active sites and increases the nitrogen content within the carbonaceous matrix. The resulting FeNi-PBA/GCS-O composite exhibits excellent glucose sensing performance with a broad linear range of 1 to 1300 μmol·L−1. Meanwhile, it also achieves a high sensitivity of 2496 μA·mmol−1·L·cm−2, a limit of detection of 100 nmol·L−1 (S/N = 3), and commendable long-term durability. The relatively simple synthesis process, exceptional sensitivity, and satisfactory electrochemical sensing performance of FeNi-PBA/GCS-O open up new directions for biosensor applications.

Graphical abstract

摘要

为满足个体连续血糖监测的需求,需要研究和开发高灵敏度、高稳定性的传感器。在这项研究中,作者提出了一种简单的策略来合成超薄富氧石墨化碳纳米片(记为GCS-O)。这些纳米片是通过煅烧二维铟基配位聚合物获得的。随后,FeNi普鲁士蓝类似物(PBA)在GCS-O上生长从而有效地引入了活性位点,增加了碳质基质内的氮含量。所得FeNi-PBA/GCS-O复合材料在1 ~ 1300 μmol·L−1M的宽线性范围内具有良好的葡萄糖传感性能。同时具有2496 μA·mmol−1·L·cm−2的高灵敏度,100 nmol·L−1的检出限(S/N = 3),较好的长期耐用性。FeNi-PBA/GCS-O相对简单的合成工艺、优异的灵敏度和令人满意的电化学传感性能为生物传感器的应用开辟了新的方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ohayon D, Nikiforidis G, Savva A, Giugni A, Wustoni S, Palanisamy T, Chen XX, Maria IP, Fabrizio ED, Costa PMFJ, McCulloch I, Inal S. Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat Mater. 2020;19:456. https://doi.org/10.1038/s41563-019-0556-4.

    Article  CAS  PubMed  Google Scholar 

  2. Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem Soc Rev. 2020;49(21):7671. https://doi.org/10.1039/D0CS00304B.

    Article  CAS  PubMed  Google Scholar 

  3. Heller A, Feldman B. Electrochemical glucose sensors and their applications in diabetes management. Chem Rev. 2008;108(7):2482. https://doi.org/10.1021/cr068069y.

    Article  CAS  PubMed  Google Scholar 

  4. Chen WH, Vázquez-González M, Zoabi A, Abu-Reziq R, Willner I. Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nat Catal. 2018;1:689. https://doi.org/10.1038/s41929-018-0117-2.

    Article  CAS  Google Scholar 

  5. Wang QQ, Zhang XP, Huang L, Zhang ZQ, Dong SJ. GOx@ZIF-8(NiPd) nanoflower: an artificial enzyme system for tandem catalysis. Angew Chem Int Ed. 2017;56(50):16082. https://doi.org/10.1002/anie.201710418.

    Article  CAS  Google Scholar 

  6. Waqas M, Liu CZ, Huang QL, Zhang XX, Fan YJ, Jiang Z, Wang XQ, Chen W. Zn2+ induced self-assembled fabrication of marigold-like ZnO microflower@Ni(OH)2 three-dimensional nanosheets for nonenzymatic glucose sensing. Electrochim Acta. 2022;410:140040. https://doi.org/10.1016/j.electacta.2022.140040.

    Article  CAS  Google Scholar 

  7. Wei YH, Hui YX, Lu XJ, Liu CZ, Zhang YL, Fan YJ, Chen W. One-pot preparation of NiMn layered double hydroxide-MOF material for highly sensitive electrochemical sensing of glucose. J Electroanal Chem. 2023;933:117276. https://doi.org/10.1016/j.jelechem.2023.117276.

    Article  CAS  Google Scholar 

  8. Waqas M, Yang LQ, Wei YH, Sun Y, Yang F, Fan YJ, Chen W. Controlled fabrication of nickel and cerium mixed nano-oxides supported on carbon nanotubes for glucose monitoring. Electrochim Acta. 2023;440:141735. https://doi.org/10.1016/j.electacta.2022.141735.

    Article  CAS  Google Scholar 

  9. Xue JH, Han C, Yang YD, Xu SJ, Li QP, Nie HG, Qian JJ, Yang Z. Partially oxidized carbon nanomaterials with Ni/NiO heterostructures as durable glucose sensors. Inorg Chem. 2023;62(7):3288. https://doi.org/10.1021/acs.inorgchem.2c04445.

    Article  CAS  PubMed  Google Scholar 

  10. Karikalan N, Velmurugan M, Chen SM, Karuppiah C. Modern approach to the synthesis of Ni(OH)2 decorated sulfur doped carbon nanoparticles for the nonenzymatic glucose sensor. ACS Appl Mater Interfaces. 2016;8(34):22545. https://doi.org/10.1021/acsami.6b07260.

    Article  CAS  PubMed  Google Scholar 

  11. Kim CR, Uemura T, Kitagawa S. Inorganic nanoparticles in porous coordination polymers. Chem Soc Rev. 2016;45:3828. https://doi.org/10.1039/C5CS00940E.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao JY, Yuan JX, Fang ZY, Huang SH, Chen ZY, Qiu F, Lu CB, Zhu JH, Zhuang XD. One-dimensional coordination polymers based on metal-nitrogen linkages. Coordin Chem Rev. 2022;471(15):214735. https://doi.org/10.1016/j.ccr.2022.214735.

    Article  CAS  Google Scholar 

  13. Shang XB, Song I, Jung GY, Choi W, Ohtsu H, Lee JH, Koo JY, Liu B, Ahn J, Kawano M, Kwak SK, Oh Jh. Chiral self-sorted multifunctional supramolecular biocoordination polymers and their applications in sensors. Nat Commun. 2018;9:3933. https://doi.org/10.1038/s41467-018-06147-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie ZG, Ma LQ, deKrafft KE, Jin A, Lin WB. Porous phosphorescent coordination polymers for oxygen sensing. J Am Chem Soc. 2010;132(3):922. https://doi.org/10.1021/ja909629f.

    Article  CAS  PubMed  Google Scholar 

  15. Liu JQ, Luo ZD, Pan Y, Singh AK, Trivedi M, Kumar A. Recent developments in luminescent coordination polymers: designing strategies, sensing application and theoretical evidences. Coordin Chem Rev. 2020;406(4):213145. https://doi.org/10.1016/j.ccr.2019.213145.

    Article  CAS  Google Scholar 

  16. Wang BF, Luo YY, Gao L, Liu B, Duan GT. High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks. Biosens Bioelectron. 2021;171:112736. https://doi.org/10.1016/j.bios.2020.112736.

    Article  CAS  PubMed  Google Scholar 

  17. Li H, Guo CY, Xu CL. A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu–Ag superstructures. Biosens Bioelectron. 2015;63:339. https://doi.org/10.1016/j.bios.2014.07.061.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou GP, Han JJ, Yang YL, Fan RQ, Li J, Fu LQ, Zhang Y. Solvothermal syntheses, crystal structures and luminescent properties of two new aromatic dicarboxylate indium coordination polymers. Inorg Chem Commun. 2014;40:124. https://doi.org/10.1016/j.inoche.2013.11.039.

    Article  CAS  Google Scholar 

  19. Huang Q, Xu YW, Guo YY, Zhang LJ, Hu Y, Qian JJ, Huang SM. Highly graphitized N-doped carbon nanosheets from 2-dimensional coordination polymers for efficient metal-air batteries. Carbon. 2022;188:135. https://doi.org/10.1016/j.carbon.2021.11.062.

    Article  CAS  Google Scholar 

  20. Mao LJ, Chen DD, Guo YY, Han C, Zhou XM, Yang Z, Huang SM, Qian JJ. Different growth behavior of MOF-on-MOF heterostructures to enhance oxygen evolution. Chemsuschem. 2023;16(1):e202201947. https://doi.org/10.1002/cssc.202201947.

    Article  CAS  PubMed  Google Scholar 

  21. Lai CL, Li HM, Sheng Y, Zhou M, Wang MX, Wang KL, Jiang K. 3D spatial combination of CN vacancy-mediated NiFe-PBA with N-doped carbon nanofibers network toward free-standing bifunctional electrode for Zn-air batteries. Adv Sci. 2022;9(11):2105925. https://doi.org/10.1002/advs.202105925.

    Article  CAS  Google Scholar 

  22. Ma FH, Wu Q, Liu M, Zheng LR, Tong FX, Wang ZY, Wang P, Liu YY, Cheng HF, Dai Y, Zheng ZK, Fan YC, Huang BB. Surface fluorination engineering of NiFe Prussian blue analogue derivatives for highly efficient oxygen evolution reaction. ACS Appl Mater Interfaces. 2021;13(4):5142. https://doi.org/10.1021/acsami.0c20886.

    Article  CAS  PubMed  Google Scholar 

  23. Wang T, Zhang X, Yang P, Jiang SP. Vertically aligned MoS2 nanosheets on N-doped carbon nanotubes with NiFe alloy for overall water splitting. Inorg Chem Front. 2020;7(19):3578. https://doi.org/10.1039/D0QI00737D.

    Article  CAS  Google Scholar 

  24. Li JH, He LZ, Jiang JB, Xu ZF, Liu MQ, Liu X, Tong HX, Liu Z, Qian D. Facile syntheses of bimetallic Prussian blue analogues (KxM[Fe(CN)6nH2O, M=Ni Co, and Mn) for electrochemical determination of toxic 2-nitrophenol. Electrochim Acta. 2020;353:136579. https://doi.org/10.1016/j.electacta.2020.136579.

    Article  CAS  Google Scholar 

  25. Zhang H, Geng SY, Ouyang MZ, Yadegari H, Xie F, Riley DJ. A self-reconstructed bifunctional electrocatalyst of pseudo-amorphous nickel carbide @ iron oxide network for seawater splitting. Adv Sci. 2022;9(15):2200146. https://doi.org/10.1002/advs.202200146.

    Article  CAS  Google Scholar 

  26. Jia X, Kang XX, Li YL, Cui K, Wu XH, Qin W, Wu G. Amorphous Ni(III)-based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water. Appl Catal B. 2022;312:121389. https://doi.org/10.1016/j.apcatb.2022.121389.

    Article  CAS  Google Scholar 

  27. Chen F, Zhang SS, Guo RD, Ma BB, Xiong Y, Luo H, Cheng YZ, Wang X, Gong RZ. 1D magnetic nitrogen doped carbon-based fibers derived from NiFe Prussian blue analogues embedded polyacrylonitrile via electrospinning with tunable microwave absorption. Compos B Eng. 2021;224:109161. https://doi.org/10.1016/j.compositesb.2021.109161.

    Article  CAS  Google Scholar 

  28. Fantauzzi M, Secci F, Angotzi MS, Passiu C, Cannas C, Rossi A. Nanostructured spinel cobalt ferrites: Fe and Co chemical state, cation distribution and size effects by X-ray photoelectron spectroscopy. RSC Adv. 2019;9(33):19171. https://doi.org/10.1039/C9RA03488A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nie HG, Zhen Y, Zhou XM, Yang Z, Huang SM. Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. Biosens Bioelectron. 2011;30(1):28. https://doi.org/10.1016/j.bios.2011.08.022.

    Article  CAS  PubMed  Google Scholar 

  30. Chen YF, Yao HL, Kong FT, Tian H, Meng G, Wang SZ, Mao XP, Cui XZ, Hou XM, Shi JL. MXene synergistically coupling FeNi LDH nanosheets for boosting oxygen evolution reaction. Appl Catal B. 2021;297:120474. https://doi.org/10.1016/j.apcatb.2021.120474.

    Article  CAS  Google Scholar 

  31. Zhang ZZ, Huang XJ, Zhang BB, Bi YP. High-performance and stable BiVO4 photoanodes for solar water splitting via phosphorus-oxygen bonded FeNi catalysts. Energy Environ Sci. 2022;15(7):2867. https://doi.org/10.1039/D2EE00936F.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21601137), Natural Science Foundation of Zhejiang Province (No. LQ16B010003), Basic Science and Technology Research Project of Wenzhou, Zhejiang Province (No. H20220001), and the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities Association (No. 202101BA070001-042), the Yunnan Province Young and Middle-aged Academic and Technical Leaders Reserve Talent Project (202105AC160060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi-Peng Li or Jin-Jie Qian.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7015 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, JH., Sun, QH., Han, C. et al. FeNi Prussian blue analogues on highly graphitized carbon nanosheets as efficient glucose sensors. Rare Met. 43, 2730–2738 (2024). https://doi.org/10.1007/s12598-024-02620-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02620-0

Keywords

Navigation