Skip to main content
Log in

Transition metal clusters with precise numbers of atoms anchored on graphdiyne as multifunctional electrocatalysts for OER/ORR/HER: a computational study

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Subnanometer metal clusters play an increasingly important role in heterogeneous catalysis due to their high catalytic activity and selectivity. In this work, by means of the density functional theory (DFT) calculations, the catalytic activities of transition metal clusters with precise numbers of atoms supported on graphdiyne (TM1-4@GDY, TM = V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) were investigated for oxygen evolution reactions (OER), oxygen reduction reactions (ORR) and hydrogen evolution reactions (HER). The computed results reveal that the Pd2, Pd4 and Pt1 anchored graphdiyne can serve as trifunctional catalysts for OER/ORR/HER with the overpotentials of 0.49/0.37/0.06, 0.45/0.33/0.12 and 0.37/0.43/0.01 V, respectively, while Pd1 and Pt2@graphdiyne can exhibit excellent catalytic performance for water splitting (OER/HER) with the overpotentials of 0.55/0.17 and 0.43/0.03 V. In addition, Ni1 and Pd3 anchored GDY can perform as bifunctional catalysts for metal–air cells (OER/ORR) and fuels cells (ORR/HER) with the overpotentials of 0.34/0.32 and 0.42/0.04 V, respectively. Thus, by precisely controlling the numbers of atoms in clusters, the TM1-4 anchored graphdiyne can serve as promising multifunctional electrocatalysts for OER/ORR/HER, which may provide an instructive strategy to design catalysts for the energy conversation and storage devices.

Graphical abstract

摘要

亚纳米金属团簇由于具有高催化活性和高选择性在异相催化中发挥着越来越重要的作用。本文通过密度泛函理论(DFT)的计算,研究了石墨炔上锚定精确原子数目的过渡金属团簇(TM1-4@GDY,TM=V,Cr,Mn,Fe,Co,Ni,Cu,Ru,Rh,Pd,Ir,Pt)对析氧反应(OER)、氧还原反应(ORR)和析氢反应(HER)催化活性的影响。计算结果表明,Pd2、Pd4和Pt1锚定石墨炔分别具有0.49/0.37/0.06、0.45/0.33/0.12和0.37/0.43/0.01 V的过电位,可作为OER/ORR/HER的三功能催化剂,而Pd1和Pt2锚定的石墨炔具有良好的水裂解催化性能,OER和HER的过电位分别为0.55/0.17和0.43/0.03 V。Ni1和Pd3锚定GDY可作为金属-空气电池(OER/ORR)和燃料电池(ORR/HER)的双功能催化剂,其过电位分别为0.34/0.32和0.42/0.04 V。因此,通过精确控制团簇中的原子数,过渡金属团簇锚定的石墨炔可以作为OER/ORR/HER的多功能电催化剂,为能源转换和储存装置的催化剂设计提供了一种有指导意义的策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015;44(8):2060. https://doi.org/10.1039/C4CS00470A.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao CX, Liu JN, Wang J, Ren D, Li BQ, Zhang Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem Soc Rev. 2021;50(13):7745. https://doi.org/10.1039/D1CS00135C.

    Article  CAS  PubMed  Google Scholar 

  3. Chen H, Liang X, Liu YP, Ai X, Asefa T, Zou XX. Active site engineering in porous electrocatalysts. Adv Mater. 2020;32(44):2002435. https://doi.org/10.1002/adma.202002435.

    Article  Google Scholar 

  4. Liu JB, Gong HS, Ye GL, Fei HL. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41(5):1703. https://doi.org/10.1007/s12598-021-01904-z.

    Article  CAS  Google Scholar 

  5. Zhou Y, Sheng L, Luo Q, Zhang W, Yang J. Improving the activity of electrocatalysts toward the hydrogen evolution reaction, the oxygen evolution reaction, and the oxygen reduction reaction via modification of metal and ligand of conductive two-dimensional metal-organic frameworks. J Phys Chem Lett. 2021;12(48):11652. https://doi.org/10.1021/acs.jpclett.1c03452.

    Article  CAS  PubMed  Google Scholar 

  6. Xue Z, Zhang X, Qin J, Liu R. Revealing Ni-based layered double hydroxides as high-efficiency electrocatalysts for the oxygen evolution reaction: a DFT study. J Mater Chem A. 2019;7(40):23091. https://doi.org/10.1039/C9TA06686A.

    Article  CAS  Google Scholar 

  7. Lu S, Zhang Y, Lou F, Guo K, Yu Z. Non-precious metal activated MoSi2N4 monolayers for high-performance OER and ORR electrocatalysts: a first-principles study. Appl Surf Sci. 2022;579: 152234. https://doi.org/10.1016/j.apsusc.2021.152234.

    Article  CAS  Google Scholar 

  8. Zhao G, Rui K, Dou SX, Sun W. Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv Funct Mater. 2018;28(43):1803291. https://doi.org/10.1002/adfm.201803291.

    Article  CAS  Google Scholar 

  9. Marković N, Schmidt T, Stamenković V, Ross P. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel cells. 2001;1(2):105. https://doi.org/10.1002/1615-6854(200107)1:2%3c105::AID-FUCE105%3e3.0.CO;2-9.

    Article  Google Scholar 

  10. Oh HS, Nong HN, Reier T, Gliech M, Strasser P. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem Sci. 2015;6(6):3321. https://doi.org/10.1039/C5SC00518C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nong HN, Oh HS, Reier T, Willinger E, Willinger MG, Petkov V, Teschner D, Strasser P. Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew Chem Int Ed. 2015;54(10):2975. https://doi.org/10.1002/anie.201411072.

    Article  CAS  Google Scholar 

  12. Qin Z, Zhao J. 1 T-MoSe2 monolayer supported single Pd atom as a highly-efficient bifunctional catalyst for ORR/OER. J Colloid Interface Sci. 2022;605:155. https://doi.org/10.1016/j.jcis.2021.07.087.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng Y, Jiao Y, Zhu Y, Cai Q, Vasileff A, Li LH, Han Y, Chen Y, Qiao SZ. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J Am Chem Soc. 2017;139(9):3336. https://doi.org/10.1021/jacs.6b13100.

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Yu G, Huang X, Chen W. The crucial role of strained ring in enhancing the hydrogen evolution catalytic activity for the 2D carbon allotropes: a high-throughput first-principles investigation. 2D Mater. 2019;7(1):015015. https://doi.org/10.1088/2053-1583/ab546f.

    Article  CAS  Google Scholar 

  15. Wang J, Wang J, Song X, Qi S, Zhao M. Multifunctional electrocatalytic activity of coronene-based two-dimensional metal-organic frameworks: TM-PTC. Appl Surf Sci. 2020;511: 145393. https://doi.org/10.1016/j.apsusc.2020.145393.

    Article  CAS  Google Scholar 

  16. Liu XY, Li G, Liu JW, Zhao JX. Transition metal atoms anchored on square graphyne as multifunctional electrocatalysts: a computational investigation. Mol Catal. 2022;531:112706. https://doi.org/10.1016/j.mcat.2022.112706.

    Article  CAS  Google Scholar 

  17. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011;3(8):634. https://doi.org/10.1038/nchem.1095.

    Article  CAS  PubMed  Google Scholar 

  18. Ma D, Zeng Z, Liu L, Jia Y. Theoretical screening of the transition metal heteronuclear dimer anchored graphdiyne for electrocatalytic nitrogen reduction. J Energy Chem. 2021;54:501. https://doi.org/10.1016/j.jechem.2020.06.032.

    Article  CAS  Google Scholar 

  19. Feng Y, Duan Y, Zou H, Ma J, Zhou K, Zhou X. Research status of single atom catalyst in hydrogen production by photocatalytic water splitting. Chin J Rare Met. 2021;45(5):551. https://doi.org/10.13373/j.cnki.cjrm.XY20090007.

    Article  Google Scholar 

  20. Zhu C, Fu S, Shi Q, Du D, Lin Y. Single-atom electrocatalysts. Angew Chem Int Ed. 2017;56(45):13944. https://doi.org/10.1002/anie.201703864.

    Article  CAS  Google Scholar 

  21. Wei ZX, Zhu YT, Liu JY, Zhang ZC, Hu WP, Xu H, Feng YZ, Ma JM. Recent advance in single-atom catalysis. Rare Met. 2021;40(4):767. https://doi.org/10.1007/s12598-020-01592-1.

    Article  CAS  Google Scholar 

  22. Tao H, Choi C, Ding LX, Jiang Z, Han Z, Jia M, Fan Q, Gao Y, Wang H, Robertson AW. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem. 2019;5(1):204. https://doi.org/10.1016/j.chempr.2018.10.007.

    Article  CAS  Google Scholar 

  23. He T, Matta SK, Will G, Du A. Transition-metal single atoms anchored on graphdiyne as high-efficiency electrocatalysts for water splitting and oxygen reduction. Small Methods. 2019;3(9):1800419. https://doi.org/10.1002/smtd.201800419.

    Article  CAS  Google Scholar 

  24. Du Z, Deng K, Kan E, Zhan C. Exploring the catalytic activity of graphene-based TM-NxC4-x single atom catalysts for oxygen reduction reaction via density functional theory calculation. Phys Chem Chem Phys. 2023;25(20):13913. https://doi.org/10.1039/D3CP01168B.

    Article  CAS  PubMed  Google Scholar 

  25. Sikam P, Jitwatanasirikul T, Roongcharoen T, Yodsin N, Meeprasert J, Takahashi K, Namuangruk S. Understanding the interaction between transition metal doping and ligand atoms of ZnS and ZnO monolayers to promote the CO2 reduction reaction. Phys Chem Chem Phys. 2022;24(21):12909. https://doi.org/10.1039/D2CP00878E.

    Article  CAS  PubMed  Google Scholar 

  26. Feng Z, Su G, Ding H, Ma Y, Li Y, Tang Y, Dai X. Atomic alkali metal anchoring on graphdiyne as single-atom catalysts for capture and conversion of CO2 to HCOOH. Mol Catal. 2020;494: 111142. https://doi.org/10.1016/j.mcat.2020.111142.

    Article  CAS  Google Scholar 

  27. Niu H, Zhang Z, Wang X, Wan X, Shao C, Guo Y. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv Funct Mater. 2021;31(11):2008533. https://doi.org/10.1002/adfm.202008533.

    Article  CAS  Google Scholar 

  28. He CZ, Zhang YX, Wang J, Fu L. Anchor single atom in h-BN assist NO synthesis NH3: a computational view. Rare Met. 2022;41(10):3456. https://doi.org/10.1007/s12598-022-02059-1.

    Article  CAS  Google Scholar 

  29. Chen ZW, Chen LX, Yang CC, Jiang Q. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. J Mater Chem A. 2019;7(8):3492. https://doi.org/10.1039/C8TA11416A.

    Article  CAS  Google Scholar 

  30. He T, Zhang L, Kour G, Du A. Electrochemical reduction of carbon dioxide on precise number of Fe atoms anchored graphdiyne. J CO2 Util. 2020;37:272. https://doi.org/10.1016/j.jcou.2019.12.025.

    Article  CAS  Google Scholar 

  31. Tian S, Wang B, Gong W, He Z, Xu Q, Chen W, Zhang Q, Zhu Y, Yang J, Fu Q. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat Commun. 2021;12(1):3181. https://doi.org/10.1038/s41467-021-23517-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lv C, Cheng H, He W, Shah MIA, Xu C, Meng X, Jiao L, Wei S, Li J, Liu L. Pd3 cluster catalysis: compelling evidence from in operando spectroscopic, kinetic, and density functional theory studies. Nano Res. 2016;9:2544. https://doi.org/10.1007/s12274-016-1140-8.

    Article  CAS  Google Scholar 

  33. Liu C, Yang B, Tyo E, Seifert S, DeBartolo J, Von Issendorff B, Zapol P, Vajda S, Curtiss LA. Carbon dioxide conversion to methanol over size-selected Cu4 clusters at low pressures. J Am Chem Soc. 2015;137(27):8676. https://doi.org/10.1007/s12274-016-1140-8.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao Y, Tang H, Yang N, Wang D. Graphdiyne: recent achievements in photo-and electrochemical conversion. Adv Sci. 2018;5(12):1800959. https://doi.org/10.1002/advs.201800959.

    Article  CAS  Google Scholar 

  35. Gao X, Liu H, Wang D, Zhang J. Graphdiyne: synthesis, properties, and applications. Chem Soc Rev. 2019;48(3):908. https://doi.org/10.1039/C8CS00773J.

    Article  CAS  PubMed  Google Scholar 

  36. Yu H, Xue Y, Li Y. Graphdiyne and its assembly architectures: synthesis, functionalization, and applications. Adv Mater. 2019;31(42):1803101. https://doi.org/10.1002/adma.201803101.

    Article  CAS  Google Scholar 

  37. Shi G, Xie Y, Du L, Fan Z, Chen X, Fu X, Xie W, Wang M, Yuan M. Stabilization of cobalt clusters with graphdiyne enabling efficient overall water splitting. Nano Energy. 2020;74:104852. https://doi.org/10.1016/j.nanoen.2020.104852.

    Article  CAS  Google Scholar 

  38. Gao Y, Xue Y, Qi L, Xing C, Zheng X, He F, Li Y. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat Commun. 2022;13(1):5227. https://doi.org/10.1038/s41467-022-32937-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fang Y, Xue Y, Hui L, Chen X, Li Y. High-loading metal atoms on graphdiyne for efficient nitrogen fixation to ammonia. J Mater Chem A. 2022;10(11):6073. https://doi.org/10.1039/D1TA08241H.

    Article  CAS  Google Scholar 

  40. Xing DH, Xu CQ, Wang YG, Li J. Heterogeneous single-cluster catalysts for selective semihydrogenation of acetylene with graphdiyne-supported triatomic clusters. J Phys Chem C. 2019;123(16):10494. https://doi.org/10.1021/acs.jpcc.9b02029.

    Article  CAS  Google Scholar 

  41. Ma D, Zeng Z, Liu L, Huang X, Jia Y. Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM= Mn, Fe Co, Ni) based on graphdiyne monolayers. J Phys Chem C. 2019;123(31):19066. https://doi.org/10.1021/acs.jpcc.9b05250.

    Article  CAS  Google Scholar 

  42. Yang M, Wang Z, Jiao D, Tian Y, Shang Y, Yin L, Cai Q, Zhao J. Tuning precise numbers of supported nickel clusters on graphdiyne for efficient CO2 electroreduction toward various multi-carbon products. J Energy Chem. 2022;69:456. https://doi.org/10.1016/j.jechem.2022.01.023.

    Article  CAS  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  44. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47(1):558. https://doi.org/10.1103/PhysRevB.47.558.

    Article  CAS  Google Scholar 

  45. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B. 1994;49(20):14251. https://doi.org/10.1103/PhysRevB.49.14251.

    Article  CAS  Google Scholar 

  46. Wu X, Vargas M, Nayak S, Lotrich V, Scoles G. Towards extending the applicability of density functional theory to weakly bound systems. J Chem Phys. 2001;115(19):8748. https://doi.org/10.1063/1.1412004.

    Article  CAS  Google Scholar 

  47. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27(15):1787. https://doi.org/10.1002/jcc.20495.

    Article  CAS  PubMed  Google Scholar 

  48. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  49. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  CAS  Google Scholar 

  50. Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113(22):9901. https://doi.org/10.1063/1.1329672.

    Article  CAS  Google Scholar 

  51. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B. 2004;108(46):17886. https://doi.org/10.1021/jp047349j.

    Article  CAS  Google Scholar 

  52. Xue Y, Huang B, Yi Y, Guo Y, Zuo Z, Li Y, Jia Z, Liu H, Li Y. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat Commun. 2018;9(1):1460. https://doi.org/10.1038/s41467-018-03896-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu H, Xue Y, Huang B, Hui L, Zhang C, Fang Y, Liu Y, Zhao Y, Li Y, Liu H. Ultrathin nanosheet of graphdiyne-supported palladium atom catalyst for efficient hydrogen production. IScience. 2019;11:31. https://doi.org/10.1016/j.isci.2018.12.006.

    Article  CAS  PubMed  Google Scholar 

  54. Gao Y, Cai Z, Wu X, Lv Z, Wu P, Cai C. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS Catal. 2018;8(11):10364. https://doi.org/10.1021/acscatal.8b02360.

    Article  CAS  Google Scholar 

  55. Hui L, Xue Y, Yu H, Liu Y, Fang Y, Xing C, Huang B, Li Y. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J Am Chem Soc. 2019;141(27):10677. https://doi.org/10.1021/jacs.9b03004.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Li J, Zhou L, Xiang S. A theoretical study on the chemical bonding of 3d-transition-metal carbides. Solid State Commun. 2002;121(8):411. https://doi.org/10.1016/S0038-1098(02)00034-0.

    Article  CAS  Google Scholar 

  57. Nørskov JK, Bligaard T, Logadottir A, Kitchin J, Chen JG, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution. J Electrochem Soc. 2005;152(3):J23. https://doi.org/10.1149/1.1856988.

    Article  CAS  Google Scholar 

  58. Antolini E. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 2014;4(5):1426. https://doi.org/10.1021/cs4011875.

    Article  CAS  Google Scholar 

  59. Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today. 2016;262:170. https://doi.org/10.1016/j.cattod.2015.08.014.

    Article  CAS  Google Scholar 

  60. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev. 2010;39(6):2184. https://doi.org/10.1039/B912552C.

    Article  CAS  PubMed  Google Scholar 

  61. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science. 2007;315(5811):493. https://doi.org/10.1126/science.1135941.

    Article  CAS  PubMed  Google Scholar 

  62. Niu H, Wan X, Wang X, Shao C, Robertson J, Zhang Z, Guo Y. Single-atom rhodium on defective g-C3N4: a promising bifunctional oxygen electrocatalyst. ACS Sustain Chem Eng. 2021;9(9):3590. https://doi.org/10.1021/acssuschemeng.0c09192.

    Article  CAS  Google Scholar 

  63. Chen Y, Zhang X, Qin J, Liu R. Transition metal atom doped Ni3S2 as efficient bifunctional electrocatalysts for overall water splitting: design strategy from DFT studies. Mol Catal. 2021;516: 111955. https://doi.org/10.1016/j.mcat.2021.111955.

    Article  CAS  Google Scholar 

  64. Ku R, Yu G, Gao J, Huang X, Chen W. Embedding tetrahedral 3d transition metal TM4 clusters into the cavity of two-dimensional graphdiyne to construct highly efficient and nonprecious electrocatalysts for hydrogen evolution reaction. Phys Chem Chem Phys. 2020;22(6):3254. https://doi.org/10.1039/C9CP06057J.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Fundamental Research Funds for Heilongjiang Province universities (No. 2021-KYYWF-0184) and Harbin Normal University Graduate Student Innovation Project (No. HSDSSCX2023-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Wei Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3165 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XY., Liu, JW., Li, G. et al. Transition metal clusters with precise numbers of atoms anchored on graphdiyne as multifunctional electrocatalysts for OER/ORR/HER: a computational study. Rare Met. (2024). https://doi.org/10.1007/s12598-023-02611-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-023-02611-7

Keywords

Navigation