Skip to main content
Log in

A direct electrochemical biosensor for rapid glucose detection based on nitrogen-doped carbon nanocages

  • ORIGINAL ARTICLE
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Given the increasing number of diabetic patients, rapid and accurate detection of glucose in body fluids is critical. This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon nanocages (NCNCs). NCNCs possess a large specific surface area of 1395 m2·g−1, a high N atomic content of 9.37% and good biocompatibility, which is favorable for enzyme loading and electron transfer. The surface average concentration of electroactive glucose oxidase on NCNCs was 2.82 × 10–10 mol·cm−2. The NCNC-based direct electrochemical biosensor exhibited a high sensitivity of 13.7 μA·(mmol·L−1)−1·cm−2, rapid response time of 5 s and an impressive electron-transfer-rate constant (ks) of 1.87 s−1. Furthermore, we investigated an NCNC-based direct electron transfer (DET) biosensor for sweat glucose detection, which demonstrated tremendous promise for non-invasive wearable diabetes diagnosis.

Graphical abstract

摘要

随着糖尿病患者数量不断增加,快速、准确地检测体液中葡萄糖含量变得至关重要。本研究开发了一种基于氮掺杂碳纳米笼(NCNCs)的直接电化学葡萄糖生物传感器。该传感器的界面修饰材料NCNCs具有大比表面积(1395 m2·g−1)和高含N量(9.37%),同时具备良好的生物相容性,这些结构和特性有利于酶的高密度负载和电子的快速传递。其中,NCNCs表面电活性葡萄糖氧化酶的平均浓度为2.82 × 10−10 mol·cm−2。基于NCNC的直接电化学生物传感器在葡萄糖检测中表现出高灵敏度(13.7 μA·(mmol·L−1)−1·cm−2)、快速响应(5 s)和较小的电子传递速率常数(ks,1.87 s−1)。我们将基于NCNCs的直接电化学生物传感器成功用于汗液葡萄糖的检测,表明基于NCNCs的直接电化学传感器在无创可穿戴式糖尿病诊断方面具有很好的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Zhai DY, Liu B, Shi Y, Pan LJ, Wang YQ, Li WB, Zhang R, Yu GH. Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano. 2013;7(4):3540. https://doi.org/10.1021/nn400482d.

    Article  CAS  PubMed  Google Scholar 

  2. Wang D, Zhao HM, Guo L, Zhang L, Zhao HB, Fang X, Li S, Wang G. Facile synthesis of CuO–Co3O4 prickly-sphere-like composite for non-enzymatic glucose sensors. Rare Met. 2022;41(6):1911. https://doi.org/10.1007/s12598-021-01939-2.

    Article  CAS  Google Scholar 

  3. Kudo H, Sawada T, Kazawa E, Yoshida H, Iwasaki Y, Mitsubayashi K. A flexible and wearable glucose sensor based on functional polymers with soft-MEMS techniques. Biosens Bioelectron. 2006;22(4):558. https://doi.org/10.1016/j.bios.2006.05.006.

    Article  CAS  PubMed  Google Scholar 

  4. Liu Q, Liu Y, Wu F, Cao X, Li Z, Alharbi M, Abbas AN, Amer MR, Zhou C. Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano. 2018;12(2):1170. https://doi.org/10.1021/acsnano.7b06823.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang H, Zhang DZ, Wang DY, Xu ZY, Yang Y, Zhang B. Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring. Rare Met. 2022;41(9):3117. https://doi.org/10.1007/s12598-022-02031-z.

    Article  CAS  Google Scholar 

  6. Liang Z, Zhang JY, Wu C, Hu XF, Lu YH, Wang GF, Yu F, Zhang XJ, Wang YB. Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring. Biosens Bioelectron. 2020. https://doi.org/10.1016/j.bios.2020.112105.

    Article  PubMed  Google Scholar 

  7. Zhang M, Liao C, Mak CH, You P, Mak CL, Yan F. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci Rep. 2015. https://doi.org/10.1038/srep08311.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pappa AM, Parlak O, Scheiblin G, Mailley P, Salleo A, Owens RM. Organic electronics for point-of-care metabolite monitoring. Trends Biotechnol. 2018;36(1):45. https://doi.org/10.1016/j.tibtech.2017.10.022.

    Article  CAS  PubMed  Google Scholar 

  9. Okuda-Shimazaki J, Yoshida H, Lee I, Kojima K, Suzuki N, Tsugawa W, Yamada M, Inaka K, Tanaka H, Sode K. Microgravity environment grown crystal structure information based engineering of direct electron transfer type glucose dehydrogenase. Commun Biol. 2022;5(1):1334. https://doi.org/10.1038/s42003-022-04286-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee SY, Matsuno R, Ishihara K, Takai M. Direct electron transfer with enzymes on nanofiliform titanium oxide films with electron-transport ability. Biosens Bioelectron. 2013;41:289. https://doi.org/10.1016/j.bios.2012.08.037.

    Article  CAS  PubMed  Google Scholar 

  11. Lee SW, Lee KY, Song YW, Choi WK, Chang J, Yi H. Direct electron transfer of enzymes in a biologically assembled conductive nanomesh enzyme platform. Adv Mater. 2016;28(8):1577. https://doi.org/10.1002/adma.201503930.

    Article  CAS  PubMed  Google Scholar 

  12. Yanase T, Okuda-Shimazaki J, Asano R, Ikebukuro K, Sode K, Tsugawa W. Development of a versatile method to construct direct electron transfer-type enzyme complexes employing SpyCatcher/SpyTag system. Int J Mol Sci. 2023;24(3):1837. https://doi.org/10.3390/ijms24031837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freeman DME, Ming DK, Wilson R, Herzog PL, Schulz C, Felice AKG, Chen YC, O’Hare D, Holmes AH, Cass AEG. Continuous measurement of lactate concentration in human subjects through direct electron transfer from enzymes to microneedle electrodes. ACS Sens. 2023;8(4):1639. https://doi.org/10.1021/acssensors.2c02780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xia HQ, Tang H, Zhou B, Li YF, Zhang XC, Shi ZL, Deng LC, Song R, Li L, Zhang ZS, Zhou JH. Mediator-free electron-transfer on patternable hierarchical meso/macro porous bienzyme interface for highly-sensitive sweat glucose and surface electromyography monitoring. Sens Actuators B Chem. 2020;312:127962. https://doi.org/10.1016/j.snb.2020.127962.

    Article  CAS  Google Scholar 

  15. Radwan AB, Paramparambath S, Cabibihan JJ, Al-Ali AK, Kasak P, Shakoor RA, Malik RA, Mansour SA, Sadasivuni KK. Superior non-invasive glucose sensor using bimetallic CuNi nanospecies coated mesoporous carbon. Biosensors (Basel). 2021;11(11):463. https://doi.org/10.3390/bios11110463.

    Article  CAS  PubMed  Google Scholar 

  16. Jeerapan I, Sempionatto JR, Wang J. On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv Func Mater. 2019;30(29):1906243. https://doi.org/10.1002/adfm.201906243.

    Article  CAS  Google Scholar 

  17. Hiraka K, Tsugawa W, Asano R, Yokus MA, Ikebukuro K, Daniele MA, Sode K. Rational design of direct electron transfer type l-lactate dehydrogenase for the development of multiplexed biosensor. Biosens Bioelectron. 2021;176:112933. https://doi.org/10.1016/j.bios.2020.112933.

    Article  CAS  PubMed  Google Scholar 

  18. Smutok O, Karkovska M, Serkiz R, Vus B, Čenas N, Gonchar M. A novel mediatorless biosensor based on flavocytochrome b2 immobilized onto gold nanoclusters for non-invasive L-lactate analysis of human liquids. Sens Actuators B Chem. 2017;250:469. https://doi.org/10.1016/j.snb.2017.04.192.

    Article  CAS  Google Scholar 

  19. Jakubow-Piotrowska K, Kowalewska B. Spatial architecture of modified carbon nanotubes/electrochemically reduced graphene oxide nanomaterial for fast electron transfer. Application in glucose biosensor. Electroanalysis. 2019;31(5):981. https://doi.org/10.1002/elan.201800773.

    Article  CAS  Google Scholar 

  20. Yang Z, Cao Y, Li J, Jian Z, Zhang Y, Hu X. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing. Anal Chim Acta. 2015. https://doi.org/10.1016/j.aca.2015.02.029.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen JH, Zheng XY, Li YL, Zheng HT, Liu YJ, Suye SI. A glucose biosensor based on direct electron transfer of glucose oxidase on PEDOT modified microelectrode. J Electrochem Soc. 2020;167(6):067502. https://doi.org/10.1149/1945-7111/ab7e26.

    Article  CAS  Google Scholar 

  22. Wang F, Wu Y, Sun X, Wang L, Lu K. Direct electron transfer of hemoglobin at 3D graphene–nitrogen doped carbon nanotubes network modified electrode and electrocatalysis toward nitromethane. J Electroanal Chem. 2018;824:83. https://doi.org/10.1016/j.jelechem.2018.07.041.

    Article  CAS  Google Scholar 

  23. Lee I, Loew N, Tsugawa W, Ikebukuro K, Sode K. Development of a third-generation glucose sensor based on the open circuit potential for continuous glucose monitoring. Biosens Bioelectron. 2019;124–125:216. https://doi.org/10.1016/j.bios.2018.09.099.

    Article  CAS  PubMed  Google Scholar 

  24. Ito K, Okuda-Shimazaki J, Kojima K, Mori K, Tsugawa W, Asano R, Ikebukuro K, Sode K. Strategic design and improvement of the internal electron transfer of heme b domain-fused glucose dehydrogenase for use in direct electron transfer-type glucose sensors. Biosens Bioelectron. 2021;176:112911. https://doi.org/10.1016/j.bios.2020.112911.

    Article  CAS  PubMed  Google Scholar 

  25. Jayakumar K, Reichhart TMB, Schulz C, Ludwig R, Felice AKG, Leech D. An oxygen insensitive amperometric glucose biosensor based on an engineered cellobiose dehydrogenase: direct versus mediated electron transfer responses. ChemElectroChem. 2022;9(13):e202200418. https://doi.org/10.1002/celc.202200418.

    Article  CAS  Google Scholar 

  26. Tang J, Hui ZZ, Hu T, Cheng X, Guo JH, Li ZR, Yu H. A sensitive acetaminophen sensor based on Co metal-organic framework (ZIF-67) and macroporous carbon composite. Rare Met. 2022;41(1):189. https://doi.org/10.1007/s12598-021-01709-0.

    Article  CAS  Google Scholar 

  27. Zhao M, Gao Y, Sun J, Gao F. Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots. Anal Chem. 2015;87(5):2615. https://doi.org/10.1021/acs.analchem.5b00012.

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Zhang JJ, Xuan J, Zhu JJ. Myoglobin/gold nanoparticles/carbon spheres 3-D architecture for the fabrication of a novel biosensor. Nano Res. 2009;2(3):210. https://doi.org/10.1007/s12274-009-9019-6.

    Article  CAS  Google Scholar 

  29. Jeon WY, Kim HS, Jang HW, Lee YS, Shin US, Kim H-H, Choi YB. A stable glucose sensor with direct electron transfer, based on glucose dehydrogenase and chitosan hydro bonded multi-walled carbon nanotubes. Biochem Eng J. 2022;187: 108589. https://doi.org/10.1016/j.bej.2022.108589.

    Article  CAS  Google Scholar 

  30. Kamata T, Kato D, Hirono S, Niwa O. Structure and electrochemical performance of nitrogen-doped carbon film formed by electron cyclotron resonance sputtering. Anal Chem. 2013;85(20):9845. https://doi.org/10.1021/ac402385q.

    Article  CAS  PubMed  Google Scholar 

  31. Chen S, Bi J, Zhao Y, Yang L, Zhang C, Ma Y, Wu Q, Wang X, Hu Z. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv Mater. 2012;24(41):5593. https://doi.org/10.1002/adma.201202424.

    Article  CAS  PubMed  Google Scholar 

  32. Dudkaite V, Bagdziunas G. Functionalization of glucose oxidase in organic solvent: towards direct electrical communication across enzyme-electrode interface. Biosensors (Basel). 2022;12(5):335. https://doi.org/10.3390/bios12050335.

    Article  CAS  PubMed  Google Scholar 

  33. Xie K, Qin X, Wang X, Wang Y, Tao H, Wu Q, Yang L, Hu Z. Carbon nanocages as supercapacitor electrode materials. Adv Mater. 2012;24(3):347. https://doi.org/10.1002/adma.201103872.

    Article  CAS  PubMed  Google Scholar 

  34. Lyu Z, Xu D, Yang L, Che R, Feng R, Zhao J, Li Y, Wu Q, Wang X, Hu Z. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries. Nano Energy. 2015;12:657. https://doi.org/10.1016/j.nanoen.2015.01.033.

    Article  CAS  Google Scholar 

  35. Kundu S, Nagaiah TC, Xia W, Wang Y, Dommele SV, Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J Phys Chem C. 2009;113(32):14302. https://doi.org/10.1021/jp811320d.

    Article  CAS  Google Scholar 

  36. Arrigo R, Havecker M, Schlogl R, Su DS. Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chem Commun. 2008;40:4891. https://doi.org/10.1039/b812769g.

    Article  CAS  Google Scholar 

  37. Chen H, Yang Y, Hu Z, Huo K, Ma Y, Chen Y, Wang X, Lu Y. Synergism of C5N six-membered ring and vapor-liquid-solid growth of CNx nanotubes with pyridine precursor. J Phys Chem B. 2006;110(33):16422. https://doi.org/10.1021/jp062216e.

    Article  CAS  PubMed  Google Scholar 

  38. Oztekin Y, Ramanaviciene A, Yazicigil Z, Solak AO, Ramanavicius A. Direct electron transfer from glucose oxidase immobilized on polyphenanthroline-modified glassy carbon electrode. Biosens Bioelectron. 2011;26(5):2541. https://doi.org/10.1016/j.bios.2010.11.001.

    Article  CAS  PubMed  Google Scholar 

  39. Yu Y, Chen Z, He S, Zhang B, Li X, Yao M. Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosens Bioelectron. 2014;52:147. https://doi.org/10.1016/j.bios.2013.08.043.

    Article  CAS  PubMed  Google Scholar 

  40. Liu Q, Lu X, Li J, Yao X, Li J. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens Bioelectron. 2007;22(12):3203. https://doi.org/10.1016/j.bios.2007.02.013.

    Article  CAS  PubMed  Google Scholar 

  41. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem. 1979;101(1):19. https://doi.org/10.1016/s0022-0728(79)80075-3.

    Article  CAS  Google Scholar 

  42. Zhang J, Feng M, Tachikawa H. Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes. Biosens Bioelectron. 2007;22(12):3036. https://doi.org/10.1016/j.bios.2007.01.009.

    Article  CAS  PubMed  Google Scholar 

  43. Degani Y, Heller A. Direct electrical communication between chemically modified enzymes and metal-electrodes. 1. Electron-transfer from glucose-oxidase to metal-electrodes via electron relays, bound covalently to the enzyme. J Phys Chem. 1987;91(6):1285. https://doi.org/10.1021/J100290a001.

    Article  CAS  Google Scholar 

  44. Zhao Y, Li W, Pan L, Zhai D, Wang Y, Li L, Cheng W, Yin W, Wang X, Xu JB, Shi Y. ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor. Sci Rep. 2016;6:32327. https://doi.org/10.1038/srep32327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo Q, Liu L, Zhang M, Hou H, Song Y, Wang H, Zhong B, Wang L. Hierarchically mesostructured porous TiO2 hollow nanofibers for high performance glucose biosensing. Biosens Bioelectron. 2017. https://doi.org/10.1016/j.bios.2016.10.036.

    Article  PubMed  Google Scholar 

  46. Kang Z, Jiao K, Xu X, Peng R, Jiao S, Hu Z. Graphene oxide-supported carbon nanofiber-like network derived from polyaniline: a novel composite for enhanced glucose oxidase bioelectrode performance. Biosens Bioelectron. 2017;96:367. https://doi.org/10.1016/j.bios.2017.05.025.

    Article  CAS  PubMed  Google Scholar 

  47. Ma Z, Zhang J, Li J, Shi Y, Pan L. Frequency-enabled decouplable dual-modal flexible pressure and temperature sensor. IEEE Electron Device Lett. 2020;41(10):1568. https://doi.org/10.1109/led.2020.3020937.

    Article  CAS  Google Scholar 

  48. Xin M, Li J, Ma Z, Pan L, Shi Y. MXenes and their applications in wearable sensors. Front Chem. 2020;8:297. https://doi.org/10.3389/fchem.2020.00297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moyer J, Wilson D, Finkelshtein I, Wong B, Potts R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol Ther. 2012;14(5):398. https://doi.org/10.1089/dia.2011.0262.

    Article  CAS  PubMed  Google Scholar 

  50. Li S, Ma Z, Cao Z, Pan L, Shi Y. Advanced wearable microfluidic sensors for healthcare monitoring. Small. 2020;16(9):e1903822. https://doi.org/10.1002/smll.201903822.

    Article  CAS  PubMed  Google Scholar 

  51. Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T, Choi SH, Kim DH. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol. 2016;11:566. https://doi.org/10.1038/nnano.2016.38.

    Article  CAS  PubMed  Google Scholar 

  52. Koh A, Kang D, Xue Y, Lee S, Pielak RM, Kim J, Hwang T, Min S, Banks A, Bastien P, Manco MC, Wang L, Ammann KR, Jang KI, Won P, Han S, Ghaffari R, Paik U, Slepian MJ, Balooch G, Huang Y, Rogers JA. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med. 2016;8(366):366ra165. https://doi.org/10.1126/scitranslmed.aaf2593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wan SW, Chen JL, Li YH, Li JP. Progress in research and application of silver/silver chloride electrodes prepared by screen printing. Chin J Rare Met. 2021;45(1):106. https://doi.org/10.13373/j.cnki.cjrm.xy19060031.

    Article  CAS  Google Scholar 

  54. Li L, Pan L, Ma Z, Yan K, Cheng W, Shi Y, Yu G. All inkjet-printed amperometric multiplexed biosensors based on nanostructured conductive hydrogel electrodes. Nano Lett. 2018;18(6):3322. https://doi.org/10.1021/acs.nanolett.8b00003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Key Research and Development Program of China (No. 2021YFA1401103) and the National Natural Science Foundation of China (Nos. 61825403, 61921005 and 61904049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan-Lan Li or Li-Jia Pan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 580 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LL., Zhao, Y., Pan, LJ. et al. A direct electrochemical biosensor for rapid glucose detection based on nitrogen-doped carbon nanocages. Rare Met. 43, 2184–2192 (2024). https://doi.org/10.1007/s12598-023-02579-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02579-4

Keywords

Navigation