Skip to main content
Log in

Tendencies of alloyed engineering in BiOX-based photocatalysts: a state-of-the-art review

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Energy-saving and environmentally friendly photocatalysis has emerged as a popular research area in response to issues with energy scarcity and environmental degradation. Due to the unique layer-like structure, BiOX (Cl, Br, I) is frequently used in photocatalysis. However, inherent flaws in BiOX, such as an inappropriate band gap and low carrier separation efficiency, restrict its capacity for photocatalysis. Owing to the tunable grouping layer, alloying engineering is employed to optimize the intrinsic properties of BiOX and alloyed BiOX becomes a promising photocatalytic material. This review describes the structure of BiOX, where tunable halogen layers provide favorable conditions for the implementation of alloying engineering to improve intrinsic properties. The article compares the effects and mechanisms of alloying engineering on the optimization of the energy band structure and carrier behavior of BiOX, and lists various modification methods used to improve the optimization of the intrinsic properties by alloying engineering, including defect engineering, morphology control as well as the synergy between alloying and other modification methods (bismuth-rich strategies, cation doping, construction of heterojunctions and plasma resonance effects). Subsequently, applications of alloyed BiOX in energy and environmental fields are summarized, including contaminant degradation, antibacterial, CO2 reduction, nitrogen fixation and organic synthesis. Finally, we summarize the current challenges and future directions of alloyed BiOX. It is expected that this work will provide guidance and assistance for an in-depth study and understanding of the mechanisms of alloying engineering to optimize intrinsic properties and design alloyed BiOX with higher photocatalytic activity.

Graphical abstract

摘要

节能环保的光催化技术已成为应对能源短缺和环境恶化问题的热门研究领域。由于具有独特的层状结构, BiOX(Cl、Br、I) 经常被用于光催化领域。然而, BiOX 的固有缺陷 (如带隙不合适和载流子分离效率低) 限制了其光催化能力。由于BiOX具有可调的卤素层, 合金化工程被用来优化BiOX的本征特性, 合金化的BiOX成为一种很有前途的光催化材料。本综述介绍了 BiOX 的结构, 其中可调卤素层为实施合金工程以改善本征特性提供了有利条件。文章比较了合金化工程对优化 BiOX 能带结构和载流子行为的影响和机制, 并列举了通过合金化工程改善优化其本征特性的各种改性方法, 包括缺陷工程、形貌控制以及合金化与其他改性方法 (富铋策略、阳离子掺杂、异质结构建和等离子体共振效应) 的协同作用。随后, 总结了合金化BiOX在能源和环境领域的应用, 包括污染物降解、抗菌、CO2还原、固氮和有机合成。最后, 我们总结了合金化BiOX目前面临的挑战和未来的发展方向。希望这项工作能为深入研究和理解合金化工程的机理提供指导和帮助, 从而优化其内在特性, 设计出具有更高光催化活性的合金化 BiOX。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [20]. Copyright 2017, Elsevier. b Mechanism of preparation of BiOBrxI1−x using Azadirachta indica leaf extract as solvent. Reproduced with permission from Ref. [28]. Copyright 2019, Elsevier

Fig. 2
Fig. 3

Reproduced with permission from Ref. [37]. Copyright 2020, Chemistry Europe. c Partial density of states of BiOCl, BiOI and I0.25-BiOCl obtained from theoretical calculations. Reproduced with permission from Ref. [29]. Copyright 2011, American Chemical Society. d, f Band gaps and e, g UV–Vis diffuse reflectance spectra of BiOClxBr1−x (Reproduced with permission from Ref. [38]. Copyright 2017, Springer Link) and BiOBrxI1−x. Reproduced with permission from Ref. [39]. Copyright 2019, Springer Link

Fig. 4
Fig. 5

Reproduced with permission from Ref. [44]. Copyright 2018, Elsevier. c Integrated area ratio of different O species in XPS peak of O 1s. Reproduced with permission from Ref. [54]. Copyright 2022, MDPI. d Raman spectra; e PL spectra of BiOBrxI1−x with fluorine substitution. Reproduced with permission from Ref. [46]. Copyright 2019, Elsevier. f EPR spectra of pristine BiOCl and BiOCl1−3xI3x. Reproduced with permission from Ref. [55]. Copyright 2022, Elsevier. High-resolution spectra of Bi g 4f BOCI-F and h Bi 4f BOCI-U. Reproduced with permission from Ref. [57]. Copyright 2019, Elsevier

Fig. 6

Reproduced with permission from Ref. [20]. Copyright 2017, Elsevier. TEM images of photooxidation deposition of i BOC and j BOC-3 under monochromatic UV light; TEM images of photoreduction deposition of e BOC and f BOC-3 under monochromatic UV light. Reproduced with permission from Ref. [59]. Copyright 2017, Royal society of chemistry. k Photocurrent responses of BiOBrxI1−x (water) and BiOBrxI1−x (EG). Reproduced with permission from Ref. [18]. Copyright 2018, Elsevier. l XRD patterns and m PL spectra of BiOCl/Br-x. Reproduced with permission from Ref. [23] Copyright 2019, WILEY

Fig. 7

Reproduced with permission from Ref. [60]. Copyright 2019, Elsevier. c Band energy structures; d photocurrent responses of Bi3O4Cl1−xBrx. Reproduced with permission from Ref. [62]. Copyright 2018, Elsevier. e PL spectra of as-prepared photocatalysts; f schematic diagram of electron transfer of Fe–O–Bi. Reproduced with permission from Ref. [65]. Copyright 2023, Springer Link

Fig. 8

Reproduced with permission from Ref. [67]. Copyright 2022, Elsevier. d Heterogeneous structural type; e PL spectra of g-C3N4 and g-C3N4/BiOCl0.2Br0.8. Reproduced with permission from Ref. [71]. Copyright 2014, Elsevier. f Heterogeneous structural type; g photocurrent responses of BCI-CN-P nanosheets. Reproduced with permission from Ref. [72]. Copyright 2019, Elsevier. h Heterogeneous structural type; i PL spectra of g-C3N4/BiOCl0.8I0.2. Reproduced with permission from Ref. [73]. Copyright 2020, Elsevier

Fig. 9
Fig. 10

Reproduced with permission from Ref. [35]. Copyright 2017, Elsevier. b Diagram of carrier photocatalytic process for 0.5BiOBr/0.5BiOI; c exciton photocatalytic process for BiOBr0.5I0.5. Reproduced with permission from Ref.[91]. Copyright 2017, American Chemical Society. d Mechanism of photooxidizing IPA over BiO(ClBr)(1−x)/2Ix. Reproduced with permission from Ref. [21]. Copyright 2015, Royal society of chemistry. e, f Antibacterial activities of BiOBrxI1−x under dark and g, h LED light illumination against E. coli and B. subtilis. Reproduced with permission from Ref. [94]. Copyright 2021, Elsevier. i Compared to BiOCl-OV, Br-BiOCl-OV extending N–N bond of adsorbed N2. Reproduced with permission from Ref. [31]. Copyright 2019, Elsevier. j Selective oxidation of benzylamine to N-benzylidenebenzylamine under visible light; k diagram of band energy for BiOIxCl1−x. Reproduced with permission from Ref. [96]. Copyright 2021, Elsevier

Similar content being viewed by others

References

  1. Zhang KL, Liu CM, Huang FQ, Zheng C, Wang WD. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B-Environ. 2006;68(3–4):125. https://doi.org/10.1016/j.apcatb.2006.08.002.

    Article  CAS  Google Scholar 

  2. Dandapat A, Gnayem H, Sasson Y. The fabrication of BiOClxBr 1–x/alumina composite films with highly exposed 001 facets and their superior photocatalytic activities. Chem Commun. 2016;52(10):2161. https://doi.org/10.1039/C5CC09158F.

  3. Xiao X, Hao R, Liang M, Zuo XX, Nan JM, Li LS, Zhang WD. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. J Hazard Mater. 2012;233–234:122. https://doi.org/10.1016/j.jhazmat.2012.06.062.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Zhang XC, Zhao LJ, Zhao XX, Shi BP, Fan CM. First principles calculations on electronic structures and optical absorption properties of non-metal doped BiOCl. Chem J Chin Univ-Chin. 2014;35(12):2624. https://doi.org/10.7503/cjcu20140676.

    Article  CAS  Google Scholar 

  5. Long ZQ, Wang HL, Huang KW, Zhang GM, Xie HJ. Di-functional Cu2+-doped BiOCl photocatalyst for degradation of organic pollutant and inhibition of cyanobacterial growth. J Hazard Mater. 2022;424:127554. https://doi.org/10.1016/j.jhazmat.2021.127554.

    Article  CAS  PubMed  Google Scholar 

  6. Gao W, Li ZD, Han QT, Shen Y, Jiang CH, Zhang YC, Xiong YJ, Ye JH, Zou ZG, Zhou Y. State-of-the-art advancements of atomically thin two-dimensional photocatalysts for energy conversion. Chem Commun. 2022;58(69):9594. https://doi.org/10.1039/D2CC02708A.

    Article  CAS  Google Scholar 

  7. Qin X, Cheng H, Wang W, Huang B, Zhang X, Dai Y. Three dimensional BiOX (X=Cl, Br and I) hierarchical architectures: facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation. Mater Lett. 2013;100:285. https://doi.org/10.1016/j.matlet.2013.03.045.

    Article  CAS  Google Scholar 

  8. Ma W, Dong X, Wang Y, He W, Zhang W, Liang Y, Wang Y, Fu W, Liao J, Dong F. Highly enhanced photocatalytic toluene degradation and in situ FT-IR investigation on designed Sn-doped BiOCl nanosheets. Appl Surf Sci. 2022;578:152002. https://doi.org/10.1016/j.apsusc.2021.152002.

    Article  CAS  Google Scholar 

  9. Yan G, Zheng L, Xie L, Weng X, Ye J. Nature of Ag–Bi-codoped TiO2 visible light photocatalyst. Rare Met. 2011;30(3):259. https://doi.org/10.1007/s12598-011-0281-x.

    Article  CAS  Google Scholar 

  10. Kong XY, Ng BJ, Tan KH, Chen X, Wang H, Mohamed AR, Chai SP. Simultaneous generation of oxygen vacancies on ultrathin BiOBr nanosheets during visible-light-driven CO2 photoreduction evoked superior activity and long-term stability. Catal Today. 2018;314:20. https://doi.org/10.1016/j.cattod.2018.04.018.

    Article  CAS  Google Scholar 

  11. Liu Y, Son WJ, Lu J, Huang B, Dai Y, Whangbo MH. Composition dependence of the photocatalytic activities of BiOCl1xBrx solid solutions under visible light. Chem-Eur J. 2011;17:9342. https://doi.org/10.1002/chem.201100952.

    Article  CAS  PubMed  Google Scholar 

  12. Keller E, Krämer V. A strong deviation from vegard’s rule: X-ray powder investigations of the three quasi-binary phase systems BiOX–BiOY (X, Y = Cl, Br, I). Zeitschrift für Naturforschung B. 2005;60(12):1255. https://doi.org/10.1515/znb-2005-1207.

    Article  CAS  Google Scholar 

  13. Qin Q, Guo YN, Zhou DD, Yang YX, Guo YH. Facile growth and composition-dependent photocatalytic activity of flowerlike BiOCl1xBrx hierarchical microspheres. Appl Surf Sci. 2016;390:765. https://doi.org/10.1016/j.apsusc.2016.08.134.

  14. Intaphong P, Phuruangrat A, Thongtem S, Thongtem T. Synthesis of visible-light-driven F-doped BiOI for photodegradation of Rhodamine B dye. Dig J Nanomater Biostruct. 2018;13:177.

    Google Scholar 

  15. Xu HY, Han X, Tan Q, He XL, Qi SY. Structure-dependent photocatalytic performance of BiOBrxI1x nanoplate solid solutions. Catalysts. 2017;7:153. https://doi.org/10.3390/catal7050153.

    Article  CAS  Google Scholar 

  16. Zhao CX, Han CH, Yang XF, Xu JS. Synthesis of two-dimensional ultrathin photocatalytic materials towards a more sustainable environment. Green Chem. 2022;24:4728. https://doi.org/10.1039/D2GC00608A.

    Article  CAS  Google Scholar 

  17. Kim WJ, Pradhan D, Min BK, Sohn YK. Adsorption/photocatalytic activity and fundamental natures of BiOCl and BiOClxI1−x prepared in water and ethylene glycol environments, and Ag and Au-doping effects. Appl Catal B-Environ. 2014;147:711. https://doi.org/10.1016/j.apcatb.2013.10.008.

    Article  CAS  Google Scholar 

  18. Liu QY, Han G, Zheng YF, Song XC. Synthesis of BiOBrxI1−x solid solutions with dominant exposed 0 0 1 and 1 1 0 facets and their visible-light-induced photocatalytic properties. Sep Purif Technol. 2018;203:75. https://doi.org/10.1016/j.seppur.2018.04.011.

  19. Chen Y, Zhao Y, Li J, Han XY. One-step synthesis of hydrangea-like BiOCl/Br solid solution photocatalyst with co-template method. Chem J Chin Univ-Chin. 2017;38:2045. https://doi.org/10.7503/cjcu20160894.

    Article  CAS  Google Scholar 

  20. Yang J, Liang YJ, Li K, Zhu YL, Liu SQ, Xu R, Zhou W. Design of 3D flowerlike BiOClxBr1–x nanostructure with high surface area for visible light photocatalytic activities. J Alloy Compd. 2017;725:1144. https://doi.org/10.1016/j.jallcom.2017.07.213.

  21. Liu GG, Wang T, Ouyang SX, Liu LQ, Jiang HY, Yu Q, Kako T, Ye JH. Band-structure-controlled BiO(ClBr)(1–x)/2Ix solid solutions for visible-light photocatalysis. J Mater Chem A. 2015;3:8123. https://doi.org/10.1039/C4TA07128J.

    Article  CAS  Google Scholar 

  22. Guo XY, Song JL, Wang BY, Zhu XL. Preparation of BiOClzBryIz composite catalysts and its visible light catalytic degradation of methyl orange. Acta Opt Sin. 2021;41(11):1116003. https://doi.org/10.3788/AOS202141.1116003.

  23. Gao YH, Yang W, Shan XY, Chen Y. Synthesis of “walnut-like” BiOCl/Br solid solution photocatalyst by electrostatic self-assembly method. Int J Energy Res. 2020;44(3):2226. https://doi.org/10.1002/er.5084.

    Article  CAS  Google Scholar 

  24. Wang XN, Bi WL, Zhai PP, Wang XB, Li HJ, Mailhot G, Dong WB. Adsorption and photocatalytic degradation of pharmaceuticals by BiOClxIy nanospheres in aqueous solution. Appl Surf Sci. 2016;360:240. https://doi.org/10.1016/j.apsusc.2015.10.229.

    Article  CAS  ADS  Google Scholar 

  25. Wang XN, Zhang ZJ, Xue YC, Nie MH, Li HJ, Dong WB. Low crystallized BiOCl0.75I0.25 synthesized in mixed solvent and its photocatalytic properties under simulated solar irradiation. Mater Lett. 2014;136:30. https://doi.org/10.1016/j.matlet.2014.08.002.

    Article  CAS  Google Scholar 

  26. Wang XN, Chen HC, Li HJ, Mailhot G, Dong WB. Preparation and formation mechanism of BiOCl0.75I0.25 nanospheres by precipitation method in alcohol-water mixed solvents. J Colloid Interface Sci. 2016;478:1. https://doi.org/10.1016/j.jcis.2016.05.066.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Gao MC, Yang JX, Sun T, Zhang ZZ, Zhang DF, Huang HJ, Lin HX, Fang Y, Wang XX. Persian buttercup-like BiOBrxCl1x solid solution for photocatalytic overall CO2 reduction to CO and O2. Appl Catal B-Environ. 2019;243:734. https://doi.org/10.1016/j.apcatb.2018.11.020.

    Article  CAS  Google Scholar 

  28. Yadav M, Garg S, Chandra A, Hernadi K. Fabrication of leaf extract mediated bismuth oxybromide/oxyiodide (BiOBrxI1x) photocatalysts with tunable band gap and enhanced optical absorption for degradation of organic pollutants. J Colloid Interface Sci. 2019;555:304. https://doi.org/10.1016/j.jcis.2019.07.090.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Zhang L, Liu F, Xiao X, Zuo XX, Nan JM. Microwave synthesis of iodine-doped bismuth oxychloride microspheres for the visible light photocatalytic removal of toxic hydroxyl-contained intermediates of parabens: catalyst synthesis, characterization, and mechanism insight. Environ Sci Pollut Res. 2019;26(28):28871. https://doi.org/10.1007/s11356-019-06074-1.

    Article  CAS  Google Scholar 

  30. Shenawi-Khalil S, Uvarov V, Kritsman Y, Menes E, Popov I, Sasson Y. A new family of BiO(ClxBr1–x) visible light sensitive photocatalysts. Catal Commun. 2011;12(12):1136. https://doi.org/10.1016/j.catcom.2011.03.014.

  31. Wu DP, Wang R, Yang C, An YP, Lu H, Wang HJ, Cao K, Gao ZY, Zhang WC, Xu F, Jiang K. Br doped porous bismuth oxychloride micro-sheets with rich oxygen vacancies and dominating 001 facets for enhanced nitrogen photo-fixation performances. J Colloid Interface Sci. 2019;556:111. https://doi.org/10.1016/j.jcis.2019.08.048.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Wang ZW, Chen M, Huang DL, Zeng GM, Xu P, Zhou CY, Lai C, Wang H, Cheng M, Wang WJ. Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application. Chem Eng J. 2019;374:1025. https://doi.org/10.1016/j.cej.2019.06.018.

    Article  CAS  Google Scholar 

  33. Gnayem H, Sasson Y. Hierarchical nanostructured 3D flowerlike BiOClxBr1–x semiconductors with exceptional visible light photocatalytic activity. ACS Catal. 2013;3:186. https://doi.org/10.1021/cs3005133.

  34. Zhang X, Wang LW, Wang CY, Wang WK, Chen YL, Huang YX, Li WW, Feng YJ, Yu HQ. Synthesis of BiOClxBr1–x nanoplate solid solutions as a robust photocatalyst with tunable band structure. Chem-Eur J. 2015;21(33):11872. https://doi.org/10.1002/chem.201501427.

  35. Xie J, Cao YL, Jia DZ, Li YZ. Dahlia-shaped BiOClxI1−x structures prepared by a facile solid-state method: evidence and mechanism of improved photocatalytic degradation of rhodamine B dye. J Colloid Interface Sci. 2017;503:115. https://doi.org/10.1016/j.jcis.2017.05.016.

  36. Qi YL, Zheng YF, Song XC. The 001 facets-dominated photocatalyst of nanostructured rose-like BiOCl1−xBrx solid solutions enhanced photocatalytic activity. J Taiwan Inst Chem Eng. 2017;71:355. https://doi.org/10.1016/j.jtice.2016.11.018.

  37. Al-Keisy A, Mahdi R, Ahmed D, Al-Attafi K, Abd Majid WH. Enhanced photoreduction activity in BiOI1xFx nanosheet for efficient removal of pollutants from aqueous solution. ChemistrySelect. 2020;5:9758. https://doi.org/10.1002/slct.202000805.

    Article  CAS  Google Scholar 

  38. Xu HY, Han X, Tan Q, Wu KJ, Qi SY. Crystal-chemistry insight into the photocatalytic activity of BiOClxBr1x nanoplate solid solutions. Front Mater Sci. 2017;11:120. https://doi.org/10.1007/s11706-017-0379-7.

    Article  Google Scholar 

  39. Jia ZF, Wang FM, Xin F, Zhang BQ. Simple solvothermal routes to synthesize 3D BiOBrxI1x microspheres and their visible-light-induced photocatalytic properties. Ind Eng Chem Res. 2011;50(11):6688. https://doi.org/10.1021/ie102310a.

    Article  CAS  Google Scholar 

  40. Wang LY, Guo SQ, Chen YT, Pan ML, Ang EH, Yuana ZH. A mechanism investigation of how the alloying effect improves the photocatalytic nitrate reduction activity of bismuth oxyhalide nanosheets. ChemPhotoChem. 2020;4:110. https://doi.org/10.1002/cptc.201900217.

    Article  CAS  Google Scholar 

  41. He B, Jin HY, Wang YW, Fan CM, Wang YF, Zhang XC, Liu JX, Li R, Liu JW. Carbon quantum dots/Bi4O5Br2 photocatalyst with enhanced photodynamic therapy: killing of lung cancer (A549) cells in vitro. Rare Met. 2022;41(1):132. https://doi.org/10.1007/s12598-021-01762-9.

  42. Wang WD, Huang FQ, Lin XP, Yang JH. Visible-light-responsive photocatalysts xBiOBr–(1 – x)BiOI. Catal Commun. 2008;9:8. https://doi.org/10.1016/j.catcom.2007.05.014.

    Article  CAS  Google Scholar 

  43. Zhang X, Wang CY, Wang LW, Huang GX, Wang WK, Yu HQ. Fabrication of BiOBrxI1−x photocatalysts with tunable visible light catalytic activity by modulating band structures. Sci Rep. 2016;6:22800. https://doi.org/10.1038/srep22800.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Wang Q, Liu ZQ, Liu DM, Liu GS, Yang M, Cui FY, Wang W. Ultrathin two-dimensional BiOBrxI1x solid solution with rich oxygen vacancies for enhanced visible-light-driven photoactivity in environmental remediation. Appl Catal B-Environ. 2018;236:222. https://doi.org/10.1016/j.apcatb.2018.05.029.

    Article  CAS  Google Scholar 

  45. Huang HW, Li XW, Han X, Tian N, Zhang YH, Zhang TR. Moderate band-gap-broadening induced high separation of electron–hole pairs in Br substituted BiOI: a combined experimental and theoretical investigation. Phys Chem Chem Phys. 2015;17(5):3673. https://doi.org/10.1039/C4CP04842C.

    Article  CAS  PubMed  Google Scholar 

  46. Ren XJ, Li JB, Cao XZ, Wang BY, Zhang YF, Wei Y. Synergistic effect of internal electric field and oxygen vacancy on the photocatalytic activity of BiOBrxI1x with isomorphous fluorine substitution. J Colloid Interface Sci. 2019;554:500. https://doi.org/10.1016/j.jcis.2019.07.034.

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Wang H, Zhang BH, Zhao FQ, Zeng BZ. One-pot synthesis of N-graphene quantum dot-functionalized I-BiOCl Z-scheme cathodic materials for “signal-off” photoelectrochemical sensing of chlorpyrifos. ACS Appl Mater Interfaces. 2018;10:35281. https://doi.org/10.1021/acsami.8b12979.

    Article  CAS  PubMed  Google Scholar 

  48. Guo J, Li X, Liang J, Yuan X, Jiang L, Yu H, Sun H, Zhu Z, Ye S, Tang N, Zhang J. Fabrication and regulation of vacancy-mediated bismuth oxyhalide towards photocatalytic application: development status and tendency. Coord Chem Rev. 2021;443:214033. https://doi.org/10.1016/j.ccr.2021.214033.

    Article  CAS  Google Scholar 

  49. Ji MX, Shao YF, Nkudede E, Liu ZH, Sun X, Zhao JZ, Chen ZR, Yin S, Li HM, Xia JX. Oxygen vacancy triggering the broad-spectrum photocatalysis of bismuth oxyhalide solid solution for ciprofloxacin removal. J Colloid Interface Sci. 2022;626:221. https://doi.org/10.1016/j.jcis.2022.06.076.

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Wu X, Zhang K, Zhang G, Yin S. Facile preparation of BiOX (X=Cl, Br, I) nanoparticles and up-conversion phosphors/BiOBr composites for efficient degradation of NO gas: oxygen vacancy effect and near infrared light responsive mechanism. Chem Eng J. 2017;325:59. https://doi.org/10.1016/j.cej.2017.05.044.

    Article  CAS  Google Scholar 

  51. Li H, Shang J, Ai ZH, Zhang LZ. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed 001 facets. J Am Chem Soc. 2015;137(19):6393. https://doi.org/10.1021/jacs.5b03105.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang HJ, Liu L, Zhou Z. Towards better photocatalysts: first-principles studies of the alloying effects on the photocatalytic activities of bismuth oxyhalides under visible light. Phys Chem Chem Phys. 2012;14:1286. https://doi.org/10.1039/C1CP23516H.

    Article  CAS  PubMed  Google Scholar 

  53. Wang H, Zhang BH, Xi JJ, Zhao FQ, Zeng BZ. Z-scheme I-BiOCl/CdS with abundant oxygen vacancies as highly effective cathodic material for photocathodic immunoassay. Biosens Bioelectron. 2019;141:111443. https://doi.org/10.1016/j.bios.2019.111443.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Q, Nie WY, Hou T, Shen H, Li Q, Guan CS, Duan LB, Zhao XR. Optical and photocatalytic properties of Br-doped BiOCl nanosheets with rich oxygen vacancies and dominating 001 facets. Nanomaterials. 2022;12:2423. https://doi.org/10.3390/nano12142423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu KQ, Xu DF, Li ZF, Zhang SM, Tong LC, Peng JH, Zhang SY, Shen J, Chen XH. Enhanced visible-light photocatalytic degradation of ciprofloxacin hydrochloride by bulk iodine doped BiOCl with rich oxygen vacancy. Appl Surf Sci. 2022;578: 152083. https://doi.org/10.1016/j.apsusc.2021.152083.

    Article  CAS  Google Scholar 

  56. Guan M, Xiao C, Zhang J, Fan S, An R, Cheng Q, Xie J, Zhou M, Ye B, Xie Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J Am Chem Soc. 2013;135(28):10411. https://doi.org/10.1021/ja402956f.

    Article  CAS  PubMed  Google Scholar 

  57. Bi QL, Li Q, Su ZP, Chen R, Shi CX, Chen TH. Room temperature synthesis of ultrathin iodine-doped BiOCl nanosheets. Colloid Surf A-Physicochem Eng Asp. 2019;582:123899. https://doi.org/10.1016/j.colsurfa.2019.123899.

    Article  CAS  Google Scholar 

  58. Ren KX, Liu J, Liang J, Zhang K, Zheng X, Luo HD, Huang YB, Liu PJ, Yu XB. Synthesis of the bismuth oxyhalide solid solutions with tunable band gap and photocatalytic activities. Dalton Trans. 2013;42:9706. https://doi.org/10.1039/C3DT50498K.

    Article  CAS  PubMed  Google Scholar 

  59. Liu WW, Shang YY, Zhu AQ, Tan PF, Liu Y, Qiao LL, Chu DW, Xiong X, Pan J. Enhanced performance of doped BiOCl nanoplates for photocatalysis: understanding from doping insight into improved spatial carrier separation. J Mater Chem A. 2017;5:12542. https://doi.org/10.1039/C7TA02724A.

    Article  CAS  Google Scholar 

  60. Lu SS, Li J, Duan F, Duan LY, Du ML, Chen MQ. One-step preparation of Bi4O5BrxI2x solid solution with superior photocatalytic performance for organic pollutants degradation under visible light. Appl Surf Sci. 2019;475:577. https://doi.org/10.1016/j.apsusc.2019.01.043.

    Article  CAS  ADS  Google Scholar 

  61. Bai Y, Ye LQ, Chen T, Wang PQ, Wang L, Shi X, Wong PK. Synthesis of hierarchical bismuth-rich Bi4O5BrxI2x solid solutions for enhanced photocatalytic activities of CO2 conversion and Cr(VI) reduction under visible light. Appl Catal B-Environ. 2017;203:633. https://doi.org/10.1016/j.apcatb.2016.10.066.

    Article  CAS  Google Scholar 

  62. Bai Y, Yang P, Wang PQ, Fan Z, Xie HQ, Wong PK, Ye LQ. Solid phase fabrication of Bismuth-rich Bi3O4ClxBr1x solid solution for enhanced photocatalytic NO removal under visible light. J Taiwan Inst Chem Eng. 2018;82:273. https://doi.org/10.1016/j.jtice.2017.10.021.

    Article  CAS  Google Scholar 

  63. Wang C, Qiu H, Inoue T, Yao Q. Electronic structure calculations of I and Mn doped BiOCl with modified Becke–Johnson potential. Comput Mater Sci. 2014;85:138. https://doi.org/10.1016/j.commatsci.2013.12.056.

    Article  CAS  Google Scholar 

  64. Duresa LW, Kuo DH, Huang HN. Room-temperature synthesized In-BiOBr1-xIx nanosheets with visible-light-driven superior photocatalytic activity: degradation of dye/non-dye organic pollutants for environmental remediation. Chemosphere. 2020;258: 127374. https://doi.org/10.1016/j.chemosphere.2020.127374.

  65. Han Z, Lv M, Shi X, Li G, Zhao J, Zhao X. Regulating the electronic structure of Fe3+-doped BiOClxl1x solid solution by an amidoxime-functionalized fibrous support for efficient photocatalysis. Adv Fiber Mater. 2022;5:266. https://doi.org/10.1007/s42765-022-00220-0.

    Article  CAS  Google Scholar 

  66. Cui SS, Liu X, Shi YB, Ding MY, Yang XF. Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance. Rare Met. 2022;41(7):2405. https://doi.org/10.1007/s12598-022-02011-3.

  67. Tian N, Hu C, Wang J, Zhang Y, Ma T, Huang H. Layered bismuth-based photocatalysts. Coord Chem Rev. 2022;463: 214515. https://doi.org/10.1016/j.ccr.2022.214515.

    Article  CAS  Google Scholar 

  68. Di J, Xia J, Li H, Guo S, Dai S. Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy. 2017;41:172. https://doi.org/10.1016/j.nanoen.2017.09.008.

    Article  CAS  Google Scholar 

  69. Yue XY, Cheng L, Fan JJ, Xiang QJ. 2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: insights into structure regulation and Fermi level modulation. Appl Catal B-Environ. 2022;304:120979. https://doi.org/10.1016/j.apcatb.2021.120979.

    Article  CAS  Google Scholar 

  70. Liu H, Su Y, Chen Z, Jin ZT, Wang Y. Graphene sheets grafted three-dimensional BiOBr0.2I0.8 microspheres with excellent photocatalytic activity under visible light. J Hazard Mater. 2014;266:75. https://doi.org/10.1016/j.jhazmat.2013.12.013.

    Article  CAS  PubMed  Google Scholar 

  71. Shi S, Gondal MA, Rashid SG, Qi Q, Al-Saadi AA, Yamani ZH, Sui YH, Xu QY, Shen K. Synthesis of g-C3N4/BiOClxBr1x hybrid photocatalysts and the photoactivity enhancement driven by visible light. Colloid Surf A-Physicochem Eng Asp. 2014;461:202. https://doi.org/10.1016/j.colsurfa.2014.07.024.

    Article  CAS  Google Scholar 

  72. Hu XN, Zhang Y, Wang BJ, Li HJ, Dong WB. Novel g-C3N4/BiOClxI1x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light. Appl Catal B-Environ. 2019;256: 117789. https://doi.org/10.1016/j.apcatb.2019.117789.

    Article  CAS  Google Scholar 

  73. Sun XY, Du Y, Li ZF, Chen SW, Feng YB, Jiang N, Liu Y, Wang JJ, Li HY. Facile synthesis of g-C3N4/BiOClxI1x hybrids with efficient charge separation for visible-light photocatalysis. Ceram Int. 2020;46(8):10843. https://doi.org/10.1016/j.ceramint.2020.01.096.

    Article  CAS  Google Scholar 

  74. Hu YY, Lu R, Zhang WL, Liu JX, Li R, Fan CM. One-pot electrochemical preparation and performance of BiOCl0.5Br0.5/BiPO4 double-layer heterojunction thin film photocatalyst. Chin J Inorg Chem. 2022;38:1577. https://doi.org/10.11862/cjic.2022.153.

    Article  CAS  Google Scholar 

  75. Kou MP, Deng Y, Zhang RM, Wang L, Wong PK, Su FY, Ye LQ. Molecular oxygen activation enhancement by BiOBr0.5I0.5/BiOI utilizing the synergistic effect of solid solution and heterojunctions for photocatalytic NO removal. Chin J Catal. 2020;41:1480. https://doi.org/10.1016/s1872-2067(20)63607-5.

    Article  CAS  Google Scholar 

  76. Ruan XW, Hu H, Che GB, Zhou PJ, Liu CB, Dong HJ. Iodine ion doped bromo bismuth oxide modified bismuth germanate: A direct Z-scheme photocatalyst with enhanced visible-light photocatalytic performance. J Colloid Interface Sci. 2019;553:186. https://doi.org/10.1016/j.jcis.2019.06.007.

    Article  CAS  PubMed  ADS  Google Scholar 

  77. Cheng XY, Guan RQ, Chen YN, Sun YN, Shang QK. The unique TiO2(B)/BiOCl0.7I0.3-P Z-scheme heterojunction effectively degrades and mineralizes the herbicide fomesafen. Chem Eng J. 2022;431:134021. https://doi.org/10.1016/j.cej.2021.134021.

    Article  CAS  Google Scholar 

  78. Han JN, Lu CL, Wang Y, Zhang S, Zhang L, Yin Q. Fabrication of TiO2-BiOBrxI1x heterojunctions with adjustable band structure for enhanced visible light photocatalytic activity. J Alloy Compd. 2020;825: 152047. https://doi.org/10.1016/j.jallcom.2019.152047.

    Article  CAS  Google Scholar 

  79. Hua CH, Dong XL, Wang Y, Zheng N, Ma HC, Zhang XF. Synthesis of a BiOCl1xBrx@AgBr heterostructure with enhanced photocatalytic activity under visible light. RSC Adv. 2018;8(30):16513. https://doi.org/10.1039/c8ra02971g.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Jiang J, Zhang LZ, Li H, He WW, Yin JJ. Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl. Nanoscale. 2013;5:10573. https://doi.org/10.1039/C3NR03597B.

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Lei YQ, Wang GH, Guo PR, Song HC. The Ag–BiOBrxI1x composite photocatalyst: preparation, characterization and their novel pollutants removal property. Appl Surf Sci. 2013;279:374. https://doi.org/10.1016/j.apsusc.2013.04.118.

    Article  CAS  ADS  Google Scholar 

  82. Hu XB, Zhao MX, Zheng WH, Zhu JJ. Preparation, characterization, and photocatalytic performance of Ag/BiOBr0.85I0.15 nanocomposites. Materials. 2022;15(17):6022. https://doi.org/10.3390/ma15176022.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Huang YC, Long B, Li HB, Balogun M-S, Rui ZB, Tong YX, Ji HB. Enhancing the photocatalytic performance of BiOClxI1x by introducing surface disorders and Bi nanoparticles as cocatalyst. Adv Mater Interfaces. 2015;2(14):1500249. https://doi.org/10.1002/admi.201500249.

    Article  CAS  Google Scholar 

  84. Zheng CR, Cao CB, Ali Z. In situ formed Bi/BiOBrxI1x heterojunction of hierarchical microspheres for efficient visible-light photocatalytic activity. Phys Chem Chem Phys. 2015;17:13347. https://doi.org/10.1039/C5CP01655J.

    Article  CAS  PubMed  Google Scholar 

  85. Wang JZ, Wang YN, Cao CS, Zhang Y, Zhang YQ, Zhu LY. Decomposition of highly persistent perfluorooctanoic acid by hollow Bi/BiOI1xFx: synergistic effects of surface plasmon resonance and modified band structures. J Hazard Mater. 2021;402: 123459. https://doi.org/10.1016/j.jhazmat.2020.123459.

    Article  CAS  PubMed  Google Scholar 

  86. He HB, Zhang MF, Liu Z, Fan QZ, Yang K, Yu CL. Preparation by F doping and photocatalytic activities of BiOCl nanosheets with highly exposed (001) facets. Chin J Inorg Chem. 2020;36:1413. https://doi.org/10.11862/cjic.2020.177.

    Article  CAS  Google Scholar 

  87. Deng F, Luo YB, Li H, Xia BH, Luo XB, Luo SL, Dionysiou DD. Efficient toxicity elimination of aqueous Cr(VI) by positively-charged BiOClxI1x, BiOBrxI1x and BiOClxBr1xsolid solution with internal hole-scavenging capacity via the synergy of adsorption and photocatalytic reduction. J Hazard Mater. 2020;383: 121127. https://doi.org/10.1016/j.jhazmat.2019.121127.

    Article  CAS  PubMed  Google Scholar 

  88. Deng YC, Xu MY, Jiang XY, Wang JT, Tremblay PL, Zhang T. Versatile iodine-doped BiOCl with abundant oxygen vacancies and (110) crystal planes for enhanced pollutant photodegradation. Environ Res. 2023;216 114808. https://doi.org/10.1016/j.envres.2022.114808.

    Article  CAS  PubMed  Google Scholar 

  89. Gembo RO, Aoyi O, Majoni S, Etale A, Odisitse S, King’ondu CK. Synthesis of bismuth oxyhalide (BiOBrzI(1z)) solid solutions for photodegradation of methylene dye. AAS Open Res. 2021;4:43. https://doi.org/10.12688/aasopenres.13249.2.

    Article  PubMed  Google Scholar 

  90. Ye P, Wu MM, Wei M, Yang Z, Han QF. Preparation, characterization and properties of BiOCl1xIx and BiOBr1-xIx solid solution. Spectrosc Spectr Anal. 2019;39:2443. https://doi.org/10.3964/j.issn.1000-0593(2019)08-2443-07.

  91. Bai Y, Shi X, Wang PQ, Xie HQ, Ye LQ. Photocatalytic mechanism regulation of Bismuth oxyhalogen via changing atomic assembly method. ACS Appl Mater Interfaces. 2017;9(36):30273. https://doi.org/10.1021/acsami.7b10233.

    Article  CAS  PubMed  Google Scholar 

  92. Du DD, Li WJ, Chen SS, Yan TJ, You JM, Kong DS. Synergistic degradation of rhodamine B on BiOClxBr1x sheets by combined photosensitization and photocatalysis under visible light irradiation. New J Chem. 2015;39:3129. https://doi.org/10.1039/C5NJ00227C.

    Article  CAS  Google Scholar 

  93. Sherman I, Gerchman Y, Sasson Y, Gnayem H, Mamane H. Disinfection and mechanistic insights of escherichia coli in water by bismuth oxyhalide photocatalysis. Photochem Photobiol. 2016;92:826. https://doi.org/10.1111/php.12635.

    Article  CAS  PubMed  Google Scholar 

  94. Pancholi D, Bisht NS, Pande V, Dandapat A. Development of novel BiOBr0.75I0.25 nanostructures with remarkably high dark phase bactericidal activities. Colloid Surf B-Biointerfaces. 2021;199:111558. https://doi.org/10.1016/j.colsurfb.2021.111558.

    Article  CAS  Google Scholar 

  95. Yue XY, Cheng L, Li F, Fan JJ, Xiang QJ. Highly strained Bi-MOF on Bismuth oxyhalide support with tailored intermediate adsorption/desorption capability for robust CO2 photoreduction. Angew Chem-Int Edit. 2022;61:e202208414. https://doi.org/10.1002/anie.202208414.

    Article  CAS  ADS  Google Scholar 

  96. Anuchai S, Tantraviwat D, Nattestad A, Chen J, Inceesungvorn B. Tuning product selectivity and visible-light-driven activity in oxidative coupling of amines to imines: a case study of BiOIxCl1x photocatalyst. Colloid Surf A-Physicochem Eng Asp. 2021;629: 127481. https://doi.org/10.1016/j.colsurfa.2021.127481.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22376051), the Key Projects of Natural Science Research in Universities of Anhui Province (No. 2022AH050378), the University Synergy Innovation Program of Anhui Province (No. GXXT-2022-086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Yang or Sheng-Qi Guo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YD., Zeng, C., Zhang, X. et al. Tendencies of alloyed engineering in BiOX-based photocatalysts: a state-of-the-art review. Rare Met. 43, 1488–1512 (2024). https://doi.org/10.1007/s12598-023-02569-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02569-6

Keywords

Navigation