Skip to main content
Log in

Heterostructure: application of absorption-catalytic center in lithium–sulfur batteries

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Due to the high theoretical specific capacity (1675 mAh·g–1), low cost, and high safety of the sulfur cathodes, they are expected to be one of the most promising rivals for a new generation of energy storage systems. However, the shuttle effect, low conductivity of sulfur and its discharge products, volume expansion, and other factors hinder the commercialization of lithium–sulfur batteries (LSBs). The development of sulfur-fixing materials and the design of multifunctional materials to enhance the electrochemical performance of LSBs have been the main research priorities in recent years. Because of the advantages of high conductivity, built-in electric field, and good synergism, more and more researchers have employed heterostructure into sulfur-fixing materials to enhance the catalytic and absorption ability for polysulfides. In this review, the principle of heterostructure and the mechanism of enhancing the performance of lithium–sulfur batteries are described. The applications of heterostructure in cathode and interlayer of LSBs in the latest years are summarized. Finally, the cutting-edge troubles and possibilities of heterostructures in LSBs are briefly presented.

摘要

锂硫电池 (LSBs) 由于硫正极的高理论比容量 (1675 mAh·g–1), 成本低, 安全性高等优势, 有望成为新一代最有前途的储能系统之一. 然而, 穿梭效应, 硫及其放电产物的绝缘性, 体积膨胀等因素阻碍了LSBs的商业化进程. 开发固硫材料和设计多功能材料以提高LSBs的电化学性能, 是近年来的主要研究重点. 异质结构因具有高导电性, 内建电场和良好的协同作用等优点, 越来越多的研究人员将其引入到固硫材料中, 以增强固硫材料对多硫化物的吸附和催化能力. 在这篇综述中, 描述了异质结构的原理和增强锂硫电池性能的机制. 总结了近几年异质结构在LSBs正极和隔膜中的应用. 最后, 简要地提出了异质结构在LSBs中的前沿问题和可能性.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [24]. Copyright 2022, Elsevier B.V. Enhanced ion transport. Reproduced with permission from Ref. [25]. Copyright 2021, John Wiley & Sons. Increased electrical conductivity. Reproduced with permission from Ref. [26]. Copyright 2021, Elsevier B.V. Strong adsorption ability. Reproduced with permission from Ref. [27]. Copyright 2020, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [25]. Copyright 2020, John Wiley & Sons. b Long-term cycle performance of GCF-G@Mo2C positive electrode at 1C ratio. Reproduced with permission from Ref. [30]. Copyright 2022, Elsevier B.V. c Schematic diagram of TiO2-graphene heterostructure synthesis and electrochemical performance. Reproduced with permission from Ref. [32]. Copyright 2016, John Wiley & Sons. d Schematic illustration of fabrication processes of VO2@rGO/S product. Reproduced with permission from Ref. [35]. Copyright 2019, Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [26]. Copyright 2021, Elsevier B.V. b Long cycle and rate performance diagram of 3DG/TM and contrast materials. Reproduced with permission from Ref. [36]. Copyright 2020, Royal Society of Chemistry. c Schematic diagram of polysulfide reaction to Ni-MoS2/rGO during charge and discharge. Reproduced with permission from Ref. [37]. Copyright 2021, Elsevier B.V. d Transmission electron microscope (TEM) image of ReS2@NG heterojunction surface. Reproduced with permission from Ref. [38]. Copyright 2019, Elsevier B.V. e Schematic diagram of NbN-NW@C preparation process and XRD diagram of intermediates and NbN-NW@C-X (X represents glucose content) after each step. Reproduced with permission from Ref. [41]. Copyright 2019, American Chemical Society. f Synthetic schematic diagram of 3DCo5.47N/Fe3N@N-CNT/S composites. Reproduced with permission from Ref. [24]. Copyright 2022, Elsevier B.V

Fig. 5

Reproduced with permission from Ref. [27]. Copyright 2020, American Chemical Society. b Synergetic catalytic transformation of polysulfides by ZnSe@CoSe2/C@CC heterostructure during discharge. Reproduced with permission from Ref. [46]. Copyright 2022, Elsevier B.V. c Preparation diagram of S-CoS2-TiO2@C electrode material and reaction diagram during charge and discharge. Reproduced with permission from Ref. [47]. Copyright 2022, Elsevier B.V. d Trapping on PP diaphragm composed of core–shell Fe9S10/Fe3O4@C heterostructure. Reproduced with permission from Ref. [48]. Copyright 2021, Elsevier B.V. e Catalytic functional intermediate layer schematic diagram of synthesis process of EBP/EGr@S materials. Reproduced with permission from Ref. [51]. Copyright 2021, John Wiley & Sons. f LiPSs captured by TOS/MX/TOS intermediate layer, schematic diagram of diffusion and transformation. Reproduced with permission from Ref. [52]. Copyright 2022, Royal Society of Chemistry. g Schematic diagram of synthesis of MXene@TiO2 nanoarray. Reproduced with permission from Ref. [53]. Copyright 2020, Royal Society of Chemistry

Fig. 6

Reproduced with permission from Ref. [66]. Copyright 2021, Royal Society of Chemistry. b Long-term cycle performance of MoO3/MoO2-CP-Li2S8 electrode and comparison with other literature studies. Reproduced with permission from Ref. [67]. Copyright 2020, Royal Society of Chemistry. c AC impedance and corresponding charge transfer resistance of different sandwich batteries during discharge (left) and charge (right). Reproduced with permission from Ref. [68]. Copyright 2021, Elsevier B.V. d Preparation diagram of hollow CoxFe3−xO4@S heterostructure and advantage diagram as LSB cathode. Reproduced with permission from Ref. [69]. Copyright 2021, American Chemical Society. e Long cycle performance of lithium–sulfur batteries with H-TiOx@S/PPy cathode at 1C. Reproduced with permission from Ref. [70]. Copyright 2019, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [71]. Copyright 2022, Elsevier B.V. b Schematic diagram of reaction mechanism of polysulfides with Co9S8@MoS2/CNF electrode. Reproduced with permission from Ref. [72]. Copyright 2020, American Chemical Society. c Schematic diagram of rapid redox conversion of polysulfides catalyzed by ZnS-FeS heterostructure during discharge/charging. Reproduced with permission from Ref. [73]. Copyright 2019, Royal Society of Chemistry. d Schematic diagram and long cycle performance of polysulfides catalyzed by H-LDH/Co9S8 to promote lithium-ion diffusion and adsorption. Reproduced with permission from Ref. [74]. Copyright 2019, Elsevier B.V. e Schematic diagram of synthesis of S/TiN-VN@CNFs positive electrode and Li/TiN-VN@CNFs negative electrode. Reproduced with permission from Ref. [79]. Copyright 2019, John Wiley & Sons. f Schematic diagram of reaction mechanism of MoN-VN to polysulfides and long cycle performance diagram at 1C rate. Reproduced with permission from Ref. [80]. Copyright 2018, John Wiley & Sons

Fig. 8

Reproduced with permission from Ref. [81]. Copyright 2019, John Wiley & Sons. b TEM image of TiO2-TiN heterostructure. Reproduced with permission from Ref. [83]. Copyright 2022, John Wiley & Sons. c Schematic diagram of synergistic effect of CoSe2/MoS2 heterostructure on long-chain and short-chain polysulfides. Reproduced with permission from Ref. [85]. Copyright 2021, John Wiley & Sons. d Synthetic route of V2O3-VN@NC nanospheres and V2O3-VN@NC/S hybrids with yolk-shell heterostructure (V-gly is vanadyl glycerolate solid nanospheres, Fc is contraction force and Fa is adhesion force). Reproduced with permission from Ref. [86]. Copyright 2021, Royal Society of Chemistry

Fig. 9

Reproduced with permission from Ref. [128]. Copyright 2022, John Wiley & Sons. b HRTEM image of Co9S8/Li2S@G. Reproduced with permission from Ref. [129]. Copyright 2022, John Wiley & Sons. c Schematic illustration of synthesis of Li2S@C and Li2S/Co@C. Reproduced with permission from Ref. [130]. Copyright 2023, Elsevier B.V

Similar content being viewed by others

References

  1. Tang TY, Zhang LG, Guo ZF, Gu XX. Development of cathode and anode materials in lithium sulfur batteries. Chin J Rare Met. 2022;46(7):954. https://doi.org/10.13373/j.cnki.cjrm.XY21070001.

    Article  Google Scholar 

  2. Li M, Cheng LL, Yang YM, Niu F, Zhang XL, Liu DH. Development of technology for spent lithium-ion batteries recycling: a review. Chin J of Rare Met. 2022;46(3):349. https://doi.org/10.13373/j.cnki.cjrm.XY20020020.

    Article  Google Scholar 

  3. Moon S, Jung YH, Jung WK, Jung DS, Choi JW, Kim DK. Batteries: encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries. Adv Mater. 2013;25(45):6546. https://doi.org/10.1002/adma.201370286.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu Q, Xu HF, Shen K, Zhang YZ, Li B, Yang SB. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium-sulfur batteries. 2022;41(1):311. https://doi.org/10.1007/s12598-021-01839-5.

    Article  CAS  Google Scholar 

  5. Miao LX, Wang WK, Wang AB, Yuan KG, Yang YS. A high sulfur content composite with core-shell structure as cathode material for Li-S batteries. J Mater Chem A. 2013;1(38):11659. https://doi.org/10.1039/c3ta12079a.

    Article  CAS  Google Scholar 

  6. Manthiram A, Fu YZ, Chung SH, Zu CX, Su YS. Rechargeable lithium–sulfur batteries. Chem Rev. 2014;114(23):11751. https://doi.org/10.1021/cr500062v.

    Article  CAS  PubMed  Google Scholar 

  7. Borchardt L, Oschatz M, Kaskel S. Carbon materials for lithium sulfur batteries-ten critical questions. Chem-A Eur J. 2016;22(22):7324. https://doi.org/10.1002/chem.201600040.

    Article  CAS  Google Scholar 

  8. Zhou GM, Wang DW, Li F, Hou PX, Yin LC, Liu C, Lu GQ, Gentle IR, Cheng HM. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ Sci. 2012;5(10):8901. https://doi.org/10.1039/c2ee22294a.

    Article  CAS  Google Scholar 

  9. Zhang XL, Zhang P, Zhang SJ, Zhang YS, Hou RH, Liu KL, Miao FJ, Shao GS. Confining sulfur in intact freestanding scaffold of yolk-shell nanofibers with high sulfur content for lithium–sulfur batteries. J Energy Chem. 2020;51:378. https://doi.org/10.1016/j.jechem.2020.03.065.

    Article  Google Scholar 

  10. Zhou GM, Pei SF, Li L, Wang DW, Wang SG, Huang K, Yin LC, Li F, Cheng HM. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv Mater. 2014;26(4):625. https://doi.org/10.1002/adma.201302877.

    Article  CAS  PubMed  Google Scholar 

  11. Zuo JH, Zhai PB, He QQ, Wang L, Chen Q, Gu XK, Yang ZL, Gong YJ. In-situ constructed three-dimensional MoS2-MoN heterostructure as the cathode of lithium-sulfur battery. Rare Metals. 2022;41(5):1743. https://doi.org/10.1007/s12598-021-01910-1.

    Article  CAS  Google Scholar 

  12. Lu Y, Li XN, Liang JW, Hu L, Zhu YC, Qian YT. A simple melting-diffusing-reacting strategy to fabricate S/NiS2-C for lithium–sulfur batteries. Nanoscale. 2016;8(40):17616. https://doi.org/10.1039/c6nr05626a.

    Article  CAS  PubMed  Google Scholar 

  13. Liu X, Huang JQ, Zhang Q, Mai LQ. Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv Mater. 2017;29(20):1601759. https://doi.org/10.1002/adma.201601759.

    Article  CAS  Google Scholar 

  14. Zhou GM, Tian HZ, Jin Y, Tao XY, Liu BF, Zhang RF, Seh ZW, Zhuo D, Liu YY, Sun J, Zhao J, Zu CX, Wu DS, Zhang QF, Cui Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc Natl Acad Sci USA. 2017;114(5):840. https://doi.org/10.1073/pnas.1615837114.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Yang R, Du H, Lin Z, Yang L, Zhu H, Zhang H, Tang Z, Gui X. ZnO nanoparticles filled tetrapod-shaped carbon shell for lithium–sulfur batteries. Carbon. 2019;141:258. https://doi.org/10.1016/j.carbon.2018.09.060.

    Article  CAS  Google Scholar 

  16. Huang SZ, Wang ZH, Lim YV, Wang Y, Li Y, Zhang DH, Yang HY. Recent advances in heterostructure engineering for lithium–sulfur batteries. Adv Energy Mater. 2021;11(10):2003689. https://doi.org/10.1002/aenm.202003689.

    Article  CAS  Google Scholar 

  17. Gubanov AI. Theroy of the contact of two semiconductors of the same type of conductivity. Zh Tekh Fiz. 1951;21:304.

    Google Scholar 

  18. Gubanov AI. Theroy of the contact of two semiconductors with mixed conductivity. Zh Tekh Fiz. 1951;21:79.

    CAS  Google Scholar 

  19. Anderson RL. Ge-GaAs heterojunctions. IBM J Rev. 1960;4:283.

    Article  CAS  Google Scholar 

  20. Kroemer H. A proposed class of heterojunction injection lasers. Proc IEEE. 1963;51:1782.

    Article  Google Scholar 

  21. Feucht DLAGM. Heterojunctions and Metal-Semiconductor Junctions. Pittsburgh: Academic Press. 1970.3.

  22. Jiang JP, Sun CC. Heterojunction Principles and Devices. Beijing, China: PHEI. 2010.1.

  23. Li Y, Zhang JW, Chen QG, Xia XH, Chen MH. Emerging of heterostructure materials in energy storage: a review. Adv Mater. 2021;33(27):2100855. https://doi.org/10.1002/adma.202100855.

    Article  CAS  Google Scholar 

  24. Nguyen TT, Balamurugan J, Go HW, Ngo QP, Kim NH, Lee JH. Dual-functional Co5.47N/Fe3N heterostructure interconnected 3D N-doped carbon nanotube-graphene hybrids for accelerating polysulfide conversion in Li-S batteries. Chem Eng J. 2022;427:131774. https://doi.org/10.1016/j.cej.2021.131774.

    Article  CAS  Google Scholar 

  25. Wang J, Chang Z, Ding B, Li T, Yang GL, Pang ZB, Nakato T, Eguchi M, Kang YM, Na J, Guan BY, Yamauchi Y. Universal access to two-dimensional mesoporous heterostructures by micelle-directed interfacial assembly. Angewandte Chemie-Int Edit. 2020;59(44):19570. https://doi.org/10.1002/anie.202007063.

    Article  CAS  Google Scholar 

  26. Mao XT, Yu Y, Zhu L, Fu AP. SnS2 monolayer and SnS2/graphene heterostructure as promising anchoring materials for lithium–sulfur batteries: a computational study. Chem Phys. 2021;548:111220. https://doi.org/10.1016/j.chemphys.2021.111220.

    Article  CAS  Google Scholar 

  27. Ci HN, Cai JS, Ma H, Shi ZX, Cui G, Wang ML, Jin J, Wei N, Lu C, Zhao W, Sun JY, Liu ZF. Defective VSe2-graphene eterostructures enabling in situ electrocatalyst evolution for lithium–sulfur batteries. ACS Nano. 2020;14(9):11929. https://doi.org/10.1021/acsnano.0c05030.

    Article  CAS  PubMed  Google Scholar 

  28. Bao W, Zhang Z, Chen W, Zhou C, Lai Y, Li J. Facile synthesis of graphene oxide @ mesoporous carbon hybrid nanocomposites for lithium sulfur battery. Electrochim Acta. 2014;127:342. https://doi.org/10.1016/j.electacta.2014.02.043.

    Article  CAS  ADS  Google Scholar 

  29. Chen P, Zhang ZW, Duan XD, Duan XF. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem Soc Rev. 2018;47(9):3129. https://doi.org/10.1039/c7cs00887b.

    Article  CAS  PubMed  Google Scholar 

  30. Niu SZ, Zhang SW, Shi R, Wang JW, Wang WJ, Chen XM, Zhang ZQ, Miao J, Amini A, Zhao YS, Cheng C. Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries. Energy Stor Mater. 2020;33:73. https://doi.org/10.1016/j.ensm.2020.05.033.

    Article  Google Scholar 

  31. Chai C, Tan H, Fan X, Huang K. MoS2 nanosheets/graphitized porous carbon nanofiber composite: a dual-functional host for high-performance lithium–sulfur batteries. J Alloys Comp. 2020;820:153144. https://doi.org/10.1016/j.jallcom.2019.153144.

    Article  CAS  Google Scholar 

  32. Feng Y, Liu H, Liu Y, Zhao F, Li J, He X. Defective TiO2-graphene heterostructures enabling in-situ electrocatalyst evolution for lithium–sulfur batteries. J Energy Chem. 2021;62:508. https://doi.org/10.1016/j.jechem.2021.04.008.

    Article  CAS  Google Scholar 

  33. Hou CX, Hou Y, Fan YQ, Zhai YJ, Wang Y, Sun ZY, Fan RH, Dang F, Wang J. Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries. J Mater Chem A. 2018;6(16):6967. https://doi.org/10.1039/c8ta00975a.

    Article  CAS  Google Scholar 

  34. Meng T, Qin JW, Yang Z, Zheng LR, Cao MH. Significantly improved Li-ion diffusion kinetics and reversibility of Li2O in a MoO2 anode: the effects of oxygen vacancy-induced local charge distribution and metal catalysis on lithium storage. J Mater Chem A. 2019;7(29):17570. https://doi.org/10.1039/c9ta04774c.

    Article  CAS  Google Scholar 

  35. Li S, Cen Y, Xiang Q, Aslam MK, Hu B, Li W, Tang Y, Yu Q, Liu Y, Chen C. Vanadium dioxide- reduced graphene oxide binary host as an efficient polysulfide plague for highperformance lithium- sulfur batteries. J Mater Chem A. 2019;7(4):1658. https://doi.org/10.1039/c8ta10422k.

    Article  CAS  Google Scholar 

  36. He JR, Hartmann G, Lee M, Hwang GS, Chen YF, Manthiram A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ Sci. 2019;12(1):344. https://doi.org/10.1039/c8ee03252a.

    Article  CAS  Google Scholar 

  37. Zhang R, Dong YT, Al-Tahan MA, Zhang YY, Wei RP, Ma YH, Zhang YCC, JM. Insights into the sandwich-like ultrathin Ni-doped MoS2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium–sulfur batteries. J Energy Chem. 2021;60:85. https://doi.org/10.1016/j.jechem.2021.01.004.

    Article  CAS  Google Scholar 

  38. Wei N, Cai JS, Wang RC, Wang ML, Lv W, Ci HN, Sun JY, Liu ZF. Elevated polysulfide regulation by an ultralight all-CVD-built ReS2@N-Doped graphene heterostructure interlayer for lithium–sulfur batteries. Nano Energy. 2019;66:104190. https://doi.org/10.1016/j.nanoen.2019.104190.

    Article  CAS  Google Scholar 

  39. Huang YF, Chen SX, Wu ZL, Wang J, Deng Q, Zeng ZL, Deng SG. Enhanced performance and electrocatalytic kinetics on porous carbon-coated SnS microflowers as efficient Li-S battery cathodes. Electrochim Acta. 2020;343:136148. https://doi.org/10.1016/j.electacta.2020.136148.

    Article  CAS  Google Scholar 

  40. Kong X, Kong Y, Liao X, Liu S, Zhao Y. A novel mixed ether-based electrolyte for lithium–sulfur batteries with Li anode protection by dual salts. Sustain Energy Fuels. 2022;6(15):3658. https://doi.org/10.1039/d2se00647b.

    Article  CAS  Google Scholar 

  41. Jia HP, Wang DS, Li YJ, Liu LH, Gu HF, Yang S, Fu Q, Yan X, Wei YJ. Mesoporous niobium nitride nanowires encapsulated in carbon for high-performance lithium–sulfur batteries. Acs Appl Nano Mater. 2021;4(3):2606. https://doi.org/10.1021/acsanm.0c03256.

    Article  CAS  Google Scholar 

  42. Sun ZH, Zhang JQ, Yin LC, Hu GJ, Fang RP, Cheng HM, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium–sulfur batteries. Nat Commun. 2017;8:14627. https://doi.org/10.1038/ncomms14627.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  43. Guo BS, Ma QR, Zhang LC, Yang TT, Liu DY, Zhang X, Qi YR, Bao SJ, Xu MW. Yolk-shell porous carbon spheres@CoSe2 nanosheets as multilayer defenses system of polysulfide for advanced Li-S batteries. Chem Eng J. 2021;413:127521. https://doi.org/10.1016/j.cej.2020.127521.

    Article  CAS  Google Scholar 

  44. Yuan B, Hua D, Gu XX, Shen Y, Xu LC, Li XY, Zheng B, Wu JS, Zhang WN, Li S, Huo FW. Polar, catalytic, and conductive CoSe2/C frameworks for performance enhanced S cathode in Li-S batteries. J Energy Chem. 2020;48:128. https://doi.org/10.1016/j.jechem.2019.12.020.

    Article  Google Scholar 

  45. Zhou XY, Luo XY, Wang H, Yang J, Xu HR, Jia M, Tang JJ. Reduced graphene oxide@CoSe2 interlayer as anchor of polysulfides for high properties of lithium–sulfur battery. J Mater Sci. 2019;54(13):9622. https://doi.org/10.1007/s10853-019-03571-z.

    Article  CAS  ADS  Google Scholar 

  46. Liu JB, Lin CJ, Xie QS, Peng DL, Xie RJ. Core-shell zeolite imidazole framework-derived ZnSe@CoSe2/C heterostructure enabling robust polysulfide adsorption and rapid Li+ diffusion in high-rate and high-loading lithium–sulfur batteries. Chem Eng J. 2022;430:133099. https://doi.org/10.1016/j.cej.2021.133099.

    Article  CAS  Google Scholar 

  47. Li DM, Li HT, Zheng SM, Gao N, Li S, Liu J, Hou LL, Liu JC, Miao BB, Bai J, Cui ZM, Wang N, Wang B, Zhao Y. CoS2-TiO2@C core-shell fibers as cathode host material for high-performance Lithium–sulfur batteries. J Colloid Interface Sci. 2022;607:655. https://doi.org/10.1016/j.jcis.2021.08.171.

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Xu Z, Wang Z, Wang MR, Cui HT, Liu YY, Wei HY, Li J. Large-scale synthesis of Fe9S10/Fe3O4@C heterostructure as integrated trapping-catalyzing interlayer for highly efficient lithium–sulfur batteries. Chem Eng J. 2021;422:130049. https://doi.org/10.1016/j.cej.2021.130049.

    Article  CAS  Google Scholar 

  49. Luo Y-R. Comprehensive Handbook of Chemical Bond Energies. Boca Raton, FL, USA: CRC Press; 2007. 1.

    Book  Google Scholar 

  50. Sun J, Lee HW, Pasta M, Yuan HT, Zheng GY, Sun YM, Li YZ, Cui Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol. 2015;10(11):980. https://doi.org/10.1038/nnano.2015.194.

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Zhou JQ, Wu TT, Pan Y, Zhu J, Chen X, Peng CX, Shu CY, Kong L, Tang W, Chou SL. Packing sulfur species by phosphorene-derived catalytic interface for electrolyte-lean lithium–sulfur batteries. Adv Func Mater. 2022;32(4):2106966. https://doi.org/10.1002/adfm.202106966.

    Article  CAS  Google Scholar 

  52. Yao YL, Wang SZ, Jia XH, Yang J, Li Y, Liao JX, Song HJ. Freestanding sandwich-like hierarchically TiS2-TiO2/Mxene bi-functional interlayer for stable Li-S batteries. Carbon. 2022;188:533. https://doi.org/10.1016/j.carbon.2021.12.036.

    Article  CAS  Google Scholar 

  53. Qiu SY, Wang C, Jiang ZX, Zhang LS, Gu LL, Wang KX, Gao J, Zhu XD, Wu G. Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium–sulfur batteries. Nanoscale. 2020;12(32):16678. https://doi.org/10.1039/d0nr03528a.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao WY, Xu LC, Guo YH, Yang Z, Liu RP, Li XY. TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium–sulfur batteries: a first-principles calculation. Chin Phys B. 2022;31(4):047101. https://doi.org/10.1088/1674-1056/ac3227.

    Article  ADS  Google Scholar 

  55. Bao W, Xie X, Xu J, Guo X, Song J, Wu W, Su D, Wang G. Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium–sulfur battery. Chem-a Eur J. 2017;23(51):12613. https://doi.org/10.1002/chem.201702387.

    Article  CAS  Google Scholar 

  56. Ye ZQ, Jiang Y, Li L, Wu F, Chen RJ. Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv Mater. 2021;33(33):2101204. https://doi.org/10.1002/adma.202101204.

    Article  CAS  Google Scholar 

  57. Gao DY, Li Y, Guo ZL, Liu ZY, Guo K, Fang Y, Xue YM, Huang Y, Tang CC. Sc2CO-MXene/h-BN heterostructure with synergetic effect as an anchoring and catalytic material for lithium–sulfur battery. J Alloys Comp. 2021;887:161273. https://doi.org/10.1016/j.jallcom.2021.161273.

    Article  CAS  Google Scholar 

  58. Miyazato I, Hussain T, Takahashi K. Transition of wide-band gap semiconductor h-BN(BN)/P heterostructure via single-atom-embedding. J Mater Chem C. 2020;8(28):9755. https://doi.org/10.1039/d0tc02371j.

    Article  CAS  Google Scholar 

  59. Li W, Wang F, Chu XS, Liu XY, Dang YY. Regulation of bandgap and interfacial conductivity: construction of carbon-doped three-dimensional porous h-BN/rGO hybrid for hydrogen evolution. Appl Surf Sci. 2021;560:150053. https://doi.org/10.1016/j.apsusc.2021.150053.

    Article  CAS  Google Scholar 

  60. Wei CH, Tian M, Wang ML, Shi ZX, Yu LH, Li S, Fan ZD, Yang RZ, Sun JY. Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li-S batteries. ACS Nano. 2020;14(11):16073. https://doi.org/10.1021/acsnano.0c07999.

    Article  CAS  PubMed  Google Scholar 

  61. Guan B, Sun X, Zhang Y, Wu X, Qiu Y, Wang MX, Fan LS, Zhang NQ. The discovery of interfacial electronic interaction within cobalt boride@MXene for high performance lithium–sulfur batteries. Chin Chem Lett. 2021;32(7):2249. https://doi.org/10.1016/j.cclet.2020.12.051.

    Article  CAS  Google Scholar 

  62. Pan H, Huang XX, Zhang R, Wang D, Chen YT, Duan XM, Wen GW. Titanium oxide-Ti3C2 hybrids as sulfur hosts in lithium–sulfur battery: fast oxidation treatment and enhanced polysulfide adsorption ability. Chem Eng J. 2019;358:1253. https://doi.org/10.1016/j.cej.2018.10.026.

    Article  CAS  Google Scholar 

  63. Jiao L, Zhang C, Geng CN, Wu SC, Li H, Lv W, Tao Y, Chen ZJ, Zhou GM, Li J, Ling GW, Wan Y, Yang QH. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv Energy Mater. 2019;9(19):1900219. https://doi.org/10.1002/aenm.201900219.

    Article  CAS  Google Scholar 

  64. Wang ZG, Yu K, Feng Y, Qi RJ, Ren J, Zhu ZQ. VO2(p)-V2C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl Mater Interfaces. 2019;11(47):44282. https://doi.org/10.1021/acsami.9b15586.

    Article  CAS  PubMed  Google Scholar 

  65. Huang Y, Lv D, Zhang Z, Ding Y, Lai F, Wu Q, Wang H, Li Q, Cai Y, Ma Z. Co-Fe bimetallic sulfide with robust chemical adsorption and catalytic activity for polysulfides in lithium–sulfur batteries. Chem Eng J. 2020;387:124122. https://doi.org/10.1016/j.cej.2020.124122.

    Article  CAS  Google Scholar 

  66. Li JH, Xiong ZS, Sun YJ, Li FY, Feng YF, Liao JY, Li H, Wu M, Nan HX, Shi KX, Liu QB. Balanced capture and catalytic ability toward polysulfides by designing MoO2-Co2Mo3O8 heterostructures for lithium–sulfur batteries. Nanoscale. 2021;13(37):15689. https://doi.org/10.1039/d1nr04506g.

    Article  CAS  PubMed  Google Scholar 

  67. Yang WW, Wei Y, Chen Q, Qin SJ, Zuo JH, Tan SD, Zhai PB, Cui SQ, Wang HW, Jin CQ, Xiao J, Liu W, Shang JX, Gong YJ. A MoO3/MoO2-CP self-supporting heterostructure for modification of lithium–sulfur batteries. J Mater Chem A. 2020;8(31):15816. https://doi.org/10.1039/d0ta01664k.

    Article  CAS  Google Scholar 

  68. Zhu JH, Liu Y, Zhong LB, Wang JY, Chen HH, Zhao SF, Qiu YJ. Hybrid TiO-TiO2 nanoparticle/B-N co-doped CNFs interlayer for advanced Li-S batteries. J Electroanal Chem. 2021;881:114950. https://doi.org/10.1016/j.jelechem.2020.114950.

    Article  CAS  Google Scholar 

  69. Chen Y, Li JY, Kong XB, Zhang YY, Zhang YJ, Zhao JB. Enhancing catalytic conversion of polysulfides by hollow bimetallic oxide-based heterostructure nanocages for lithium–sulfur batteries. Acs Sustain Chem Eng. 2021;9(30):10392. https://doi.org/10.1021/acssuschemeng.1c04036.

    Article  CAS  Google Scholar 

  70. Chen GL, Zhong WT, Li YS, Deng Q, Ou X, Pan QC, Wang XW, Xiong XH, Yang CH, Liu ML. Rational design of TiO-TiO2 heterostructure/polypyrrole as a multifunctional sulfur host for advanced lithium–sulfur batteries. ACS Appl Mater Interfaces. 2019;11(5):5055. https://doi.org/10.1021/acsami.8b19501.

    Article  CAS  PubMed  Google Scholar 

  71. Li YC, Yan XJ, Zhou ZF, Liu J, Zhang ZH, Guo XS, Peng HR, Li GC. Synergistic coupling between Fe7S8-MoS2 heterostructure and few layers MoS2-embeded N-/P-doping carbon nanocapsule enables superior Li-S battery performances. Appl Surf Sci. 2022;574:151586. https://doi.org/10.1016/j.apsusc.2021.151586.

    Article  CAS  Google Scholar 

  72. Li BY, Su QM, Yu LT, Zhang J, Du GH, Wang D, Han D, Zhang M, Ding SK, Xu BS. Tuning the band structure of MoS2 via Co9S8@MoS2 core-shell structure to boost catalytic activity for lithium–sulfur batteries. ACS Nano. 2020;14(12):17285. https://doi.org/10.1021/acsnano.0c07332.

    Article  CAS  PubMed  Google Scholar 

  73. Li WD, Gong ZJ, Yan XJ, Wang DZ, Liu J, Guo XS, Zhang ZH, Li GC. In situ engineered ZnS-FeS heterostructures in N-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J Mater Chem A. 2020;8(1):433. https://doi.org/10.1039/c9ta11451c.

    Article  CAS  Google Scholar 

  74. Chen SX, Luo JH, Li NY, Han XX, Wang J, Deng Q, Zeng ZL, Deng SG. Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan. Energy Stor Mater. 2020;30:187. https://doi.org/10.1016/j.ensm.2020.05.002.

    Article  Google Scholar 

  75. Yao WQ, Zheng WZ, Xu J, Tian CX, Han K, Sun WZ, Xiao SX. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries. ACS Nano. 2021;15(4):7114. https://doi.org/10.1021/acsnano.1c00270.

    Article  CAS  PubMed  Google Scholar 

  76. Jin ZS, Liang ZM, Zhao M, Zhang Q, Liu BQ, Zhang LY, Chen LH, Li L, Wang CG. Rational design of MoNi sulfide yolk-shell heterostructure nanospheres as the efficient sulfur hosts for high-performance lithium–sulfur batteries. Chem Eng J. 2020;394:124983. https://doi.org/10.1016/j.cej.2020.124983.

    Article  CAS  Google Scholar 

  77. Zhang CY, Lu ZW, Wang YH, Dai Z, Zhao H, Sun GZ, Lan W, Pan XJ, Zhou JY, Xie EQ. Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for lithium–sulfur batteries. Chem Eng J. 2020;392:123734. https://doi.org/10.1016/j.cej.2019.123734.

    Article  CAS  Google Scholar 

  78. Yan L, Zhang ZX, Yu F, Wang JX, Mei T, Wang XB. Rational design of NiCo2S4@MoS2 ball-in-ball heterostructure nanospheres for advanced lithium–sulfur batteries. Electrochim Acta. 2021;383:138268. https://doi.org/10.1016/j.electacta.2021.138268.

    Article  CAS  Google Scholar 

  79. Yao Y, Wang HY, Yang H, Zeng SF, Xu R, Liu FF, Shi PC, Feng YZ, Wang K, Yang WJ, Wu XJ, Luo W, Yu Y. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv Mater. 2020;32(6):1905658. https://doi.org/10.1002/adma.201905658.

    Article  CAS  Google Scholar 

  80. Ye C, Jiao Y, Jin HY, Slattery AD, Davey K, Wang HH, Qiao SZ. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium–sulfur batteries. Angewandte Chemie-Int Edit. 2018;57(51):16703. https://doi.org/10.1002/anie.201810579.

    Article  CAS  Google Scholar 

  81. Wang SZ, Feng SP, Liang JW, Su QM, Zhao FP, Song HJ, Zheng MH, Sun Q, Song ZX, Jia XH, Yang J, Li Y, Liao JX, Li RY, Sun XL. Insight into MoS2-MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries. Adv Energy Mater. 2021;11(11):2003314. https://doi.org/10.1002/aenm.202003314.

    Article  CAS  Google Scholar 

  82. Zhou TH, Lv W, Li J, Zhou GM, Zhao Y, Fan SX, Liu BL, Li BH, Kang FY, Yang QH. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy Environ Sci. 2017;10(7):1694. https://doi.org/10.1039/c7ee01430a.

    Article  CAS  Google Scholar 

  83. Xue P, Zhu KP, Gong WB, Pu J, Li XY, Guo C, Wu LY, Wang R, Li HP, Sun JY, Hong G, Zhang Q, Yao YG. “One Stone Two Birds” design for dual-functional TiO2-TiN heterostructures enabled dendrite-free and kinetics-enhanced lithium–sulfur batteries. Adv Energy Mater. 2022;12(18):2200308. https://doi.org/10.1002/aenm.202200308.

    Article  CAS  Google Scholar 

  84. Wang RC, Luo C, Wang TS, Zhou GM, Deng YQ, He YB, Zhang QF, Kang FY, Lv W, Yang QH. Bidirectional catalysts for liquid-solid redox conversion in lithium–sulfur batteries. Adv Mater. 2020;32(32):2000315. https://doi.org/10.1002/adma.202000315.

    Article  CAS  Google Scholar 

  85. Shen ZH, Zhou QW, Yu HL, Tian JM, Shi M, Hu CQ, Zhang HG. CoSe2/MoS2 heterostructures to couple polysulfide adsorption and catalysis in lithium–sulfur batteries. Chin J Chem. 2021;39(5):1138. https://doi.org/10.1002/cjoc.20220000661.

    Article  CAS  Google Scholar 

  86. Zhao ML, Lu Y, Yang Y, Zhang MJ, Yue ZJ, Zhang N, Peng T, Liu XM, Luo YS. A vanadium-based oxide-nitride heterostructure as a multifunctional sulfur host for advanced Li-S batteries. Nanoscale. 2021;13(30):13085. https://doi.org/10.1039/d1nr03763c.

    Article  CAS  PubMed  Google Scholar 

  87. Yang DW, Liang ZF, Zhang CQ, Biendicho JJ, Botifoll M, Spadaro MC, Chen QL, Li MY, Ramon A, Moghaddam AO, Llorca J, Wang JA, Morante JR, Arbiol J, Chou SL, Cabot A. NbSe2 meets C2N: a 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium–sulfur batteries. Adv Energy Mater. 2021;11(36):2101250. https://doi.org/10.1002/aenm.202101250.

    Article  CAS  Google Scholar 

  88. Chen HX, Wang JY, Zhao Y, Zeng QD, Zhou GF, Jin ML. Three-dimensionally ordered macro/mesoporous Nb2O5/Nb4N5 heterostructure as sulfur host for high-performance lithium/sulfur batteries. Nanomaterials. 2021;11(6):1531. https://doi.org/10.3390/nano11061531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang JL, Cai DQ, Hao XG, Huang L, Lin QW, Zeng XT, Zhao SX, Lv W. Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li2S deposition for high-performance lithium–sulfur batteries. ACS Nano. 2021;15(7):11491. https://doi.org/10.1021/acsnano.1c01250.

    Article  CAS  PubMed  Google Scholar 

  90. Cao ZX, Guo J, Chen SN, Zhang ZN, Shi ZP, Yin YH, Yang MG, Wang XX, Yang ST. In situ synthesis of an ultrafine heterostructural Nb2O5-NbC polysulfide promotor for high-performance Li-S batteries. J Mater Chem A. 2021;9(38):21867. https://doi.org/10.1039/d1ta05657c.

    Article  CAS  Google Scholar 

  91. Zhang B, Luo C, Deng Y, Huang Z, Zhou G, Lv W, He Y-B, Wan Y, Kang F, Yang QH. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv Energy Mater. 2020;10(15):2000091. https://doi.org/10.1002/aenm.202000091.

    Article  CAS  Google Scholar 

  92. Wang N, Chen B, Qin K, Liu E, Shi C, He C, Zhao N. Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: a study of synergistic adsorption-electrocatalysis function. Nano Energy. 2019;60:332. https://doi.org/10.1016/j.nanoen.2019.03.060.

    Article  CAS  Google Scholar 

  93. Wang M, Fan L, Wu X, Qiu Y, Wang Y, Zhang N, Sun K. SnS2/SnO2 heterostructures towards enhanced electrochemical performance of lithium–sulfur batteries. Chem-a Eur J. 2019;25(21):5416. https://doi.org/10.1002/chem.201806231.

    Article  CAS  Google Scholar 

  94. Guo K, Qu G, Li J, Xia H, Yan W, Fu J, Yuan P, Zhang J. Polysulfides shuttling remedies by interface-catalytic effect of Mn3O4-MnPx heterostructure. Energy Stor Mater. 2021;36:496. https://doi.org/10.1016/j.ensm.2021.01.021.

    Article  Google Scholar 

  95. Xu M, Wu T, Qi J, Zhou D, Xiao Z. V2C/VO2 nanoribbon intertwined nanosheet dual heterostructure for highly flexible and robust lithium–sulfur batteries. J Mater Chem A. 2021;9(37):21429. https://doi.org/10.1039/d1ta05693j.

    Article  CAS  Google Scholar 

  96. Fang D, Wang G, Huang S, Li TC, Yu J, Xiong D, Yan D, Li XL, Zhang J, Lim YV, Yang SA, Yang HY. Combination of heterostructure with oxygen vacancies in Co@CoO1-x nanosheets array for high-performance lithium sulfur batteries. Chem Eng J. 2021;411:128546. https://doi.org/10.1016/j.cej.2021.128546.

    Article  CAS  Google Scholar 

  97. Song Y, Zhou H, Long X, Xiao J, Yang J, Wu N, Chen Z, Li P, Chen C, Liao J, Wu M. Dual-heterostructures decorated interweaved carbon nanofibers sulfur host for high performance lithium–sulfur batteries. Chem Eng J. 2021;418:129388. https://doi.org/10.1016/j.cej.2021.129388.

    Article  CAS  Google Scholar 

  98. Cao Z, Jia J, Chen S, Li H, Sang M, Yang M, Wang X, Yang S. Integrating polar and conductive Fe203-Fe3C interface with rapid polysulfide diffusion and conversion for high-performance lithium sulfur batteries. ACS Appl Mater Interfaces. 2019;11(43):39772. https://doi.org/10.1021/acsami.9b11419.

    Article  CAS  PubMed  Google Scholar 

  99. Shi H, Qin J, Lu P, Dong C, He J, Chou X, Das P, Wang J, Zhang L, Wu ZS. Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium–sulfur full batteries. Adv Func Mater. 2021;31(28):2102314. https://doi.org/10.1002/adfm.202102314.

    Article  CAS  Google Scholar 

  100. Hao Q, Cui G, Zhang Y, Li J, Zhang Z. Novel MoSe2/MoO2 heterostructure as an effective sulfur host for high-performance lithium/sulfur batteries. Chem Eng J. 2020;381:122672. https://doi.org/10.1016/j.cej.2019.122672.

    Article  CAS  Google Scholar 

  101. Zhang H, Zhao Z, Hou Y-N, Tang Y, Liang J, Liu X, Zhang Z, Wang X, Qiu J. Highly stable lithium–sulfur batteries based on p-n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion. J Mater Chem A. 2019;7(15):9230. https://doi.org/10.1039/c9ta00975b.

    Article  CAS  Google Scholar 

  102. Wang M, Song Y, Sun Z, Shao Y, Wei C, Xia Z, Tian Z, Liu Z, Sun J. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium–sulfur batteries. ACS Nano. 2019;13(11):13235. https://doi.org/10.1021/acsnano.9b06267.

    Article  CAS  PubMed  Google Scholar 

  103. Yang JL, Zhao SX, Lu YM, Zeng XT, Lv W, Cao GZ. In-situ topochemical nitridation derivative MoO2-Mo2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries. Nano Energy. 2020;68:104356. https://doi.org/10.1016/j.nanoen.2019.104356.

    Article  CAS  Google Scholar 

  104. Cai J, Sun Z, Cai W, Wei N, Fan Y, Liu Z, Zhang Q, Sun J. A robust ternary heterostructured electrocatalyst with conformal graphene chainmail for expediting Bi-directional sulfur redox in Li-S batteries. Adv Func Mater. 2021;31(23):2100586. https://doi.org/10.1002/adfm.202100586.

    Article  CAS  Google Scholar 

  105. Cai J, Jin J, Fan Z, Li C, Shi Z, Sun J, Liu Z. 3D printing of a V8C7-VO2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries. Adv Mater. 2020;32(50):2005967. https://doi.org/10.1002/adma.202005967.

    Article  CAS  Google Scholar 

  106. Wang Z, Yu K, Gong S, Du E, Zhu Z. Vanadium based carbide-oxide heterogeneous V2O5@V2C nanotube arrays for high-rate and long-life lithium–sulfur batteries. Nanoscale. 2020;12(36):18950. https://doi.org/10.1039/d0nr05199c.

    Article  CAS  PubMed  Google Scholar 

  107. Wei Y, Zhang M, Yuan L, Wang B, Wang H, Wang Q, Zhang Y, Guo J, Wu H. A heterostructure-in-built multichambered host architecture enabled by topochemical self-nitridation for rechargeable lithiated silicon-polysulfide full battery. Adv Func Mater. 2021;31(41):2103456. https://doi.org/10.1002/adfm.202103456.

    Article  CAS  Google Scholar 

  108. Fang Q, Fang M, Liu X, Yu P, Ren J-C, Li S, Liu W. An asymmetric Ti2CO/WS2 heterostructure as a promising anchoring material for lithium–sulfur batteries. J Mater Chem A. 2020;8(27):13770. https://doi.org/10.1039/d0ta04187d.

    Article  CAS  Google Scholar 

  109. Zhang L, Liu Y, Zhao Z, Jiang P, Zhang T, Li M, Pan S, Tang T, Wu T, Liu P, Hou Y, Lu H. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano. 2020;14(7):8495. https://doi.org/10.1021/acsnano.0c02762.

    Article  CAS  PubMed  Google Scholar 

  110. Kong Y, Ao X, Huang X, Bai J, Zhao S, Zhang J, Tian B. Ni-CeO2 heterostructures in Li-S batteries: a balancing act between adsorption and catalytic conversion of polysulfide. Adv Sci. 2022;9(17):2105538. https://doi.org/10.1002/advs.202105538.

    Article  CAS  Google Scholar 

  111. Mao J, Niu D, Huang G, Jin X, Wei C, Cai J, Li Y, Shi J. A Ni/Ni2P heterostructure in modified porous carbon separator for boosting polysulfide catalytic conversion. Sci China-Mater. 2022;65(9):2453. https://doi.org/10.1007/s40843-021-1982-5.

    Article  CAS  Google Scholar 

  112. Wang H, Wei Y, Wang G, Pu Y, Yuan L, Liu C, Wang Q, Zhang Y, Wu H. Selective nitridation crafted a high-density, carbon-free heterostructure host with built-in electric field for enhanced energy density Li-S batteries. Adv Sci. 2022;9(23):2201823. https://doi.org/10.1002/advs.202201823.

    Article  CAS  Google Scholar 

  113. Zhou Z, Chen Z, Lv H, Zhao Y, Wei H, Chen B, Wang Y. A hollow Co0.12Ni1.88S2/NiO heterostructure that synergistically facilitates lithium polysulfide adsorption and conversion for lithium–sulfur batteries. Energy Stor Mater. 2022;51:486. https://doi.org/10.1016/j.ensm.2022.07.001.

    Article  CAS  Google Scholar 

  114. Wang Y, Zhang D, Han J, Yang Y, Guo Y, Bai Z, Cheng J, Chu PK, Pang H, Luo Y. Porous Mo2C-Mo3N2 heterostructure/rGO with synergistic functions as polysulfides regulator for high-performance lithium sulfur batteries. Chem Eng J. 2022;433:133629. https://doi.org/10.1016/j.cej.2021.133629.

    Article  CAS  Google Scholar 

  115. Xu J, Xu L, Zhang Z, Sun B, Jin Y, Jin Q, Liu H, Wang G. Heterostructure ZnSe-CoSe2 embedded with yolk-shell conductive dodecahedral as two-in-one hosts for cathode and anode protection of lithium–sulfur full batteries. Energy Stor Mater. 2022;47:223. https://doi.org/10.1016/j.ensm.2022.02.010.

    Article  Google Scholar 

  116. Zhou C, Li M, Hu N, Yang J, Li H, Yan J, Lei P, Zhuang Y, Guo S. Single-atom-regulated heterostructure of binary nanosheets to enable dendrite-free and kinetics-enhanced Li-S batteries. Adv Func Mater. 2022;32(33):2204635. https://doi.org/10.1002/adfm.202204635.

    Article  CAS  Google Scholar 

  117. Chu R, Thanh Tuan N, Bai Y, Kim NH, Lee JH. Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium–sulfur batteries. Adv Energy Mater. 2022;12(9):2102805. https://doi.org/10.1002/aenm.202102805.

    Article  CAS  Google Scholar 

  118. Ren Y, Zhai Q, Wang B, Hu L, Ma Y, Dai Y, Tang S, Meng X. Synergistic adsorption-electrocatalysis of 2D/2D heterostructure toward high performance Li-S batteries. Chem Eng J. 2022;439:135535. https://doi.org/10.1016/j.cej.2022.135535.

    Article  CAS  Google Scholar 

  119. Zuo M, Liu H, Feng Y, Li J, He X, Tian X. 3D hollow reduced graphene oxide coated TiO2 heterostructures as an advanced host-interlayer integrated electrode for enhanced Li-S batteries. Solid State Ion. 2022;381:115948. https://doi.org/10.1016/j.ssi.2022.115948.

    Article  CAS  Google Scholar 

  120. Pu J, Wang Z, Xue P, Zhu K, Li J, Yao Y. The effect of NiO-Ni3N interfaces in in-situ formed heterostructure ultrafine nanoparticles on enhanced polysulfide regulation in lithium–sulfur batteries. J Energy Chem. 2022;68:762. https://doi.org/10.1016/j.jechem.2021.12.043.

    Article  CAS  Google Scholar 

  121. Zong H, Hu L, Gong S, Yu K, Zhu Z. Flower-petal-like Nb2C MXene combined with MoS2 as bifunctional catalysts towards enhanced lithium–sulfur batteries and hydrogen evolution. Electrochim Acta. 2022;404:139781. https://doi.org/10.1016/j.electacta.2021.139781.

    Article  CAS  Google Scholar 

  122. Qin B, Cai Y, Wang P, Zou Y, Cao J, Qi J. Crystalline molybdenum carbide - amorphous molybdenum oxide heterostructures: in situ surface reconfiguration and electronic states modulation for Li-S batteries. Energy Stor Mater. 2022;47:345. https://doi.org/10.1016/j.ensm.2022.02.028.

    Article  Google Scholar 

  123. Xue Y, Luo D, Yang N, Ma G, Zhang Z, Hou J, Wang J, Ma C, Wang X, Jin M, Chen Z, Shui L. Engineering checkerboard-like heterostructured sulfur electrocatalyst towards high-performance lithium sulfur batteries. Chem Eng J. 2022;440:135990. https://doi.org/10.1016/j.cej.2022.135990.

    Article  CAS  Google Scholar 

  124. Wang Y, Pu Y, Li Y, Zhang Y, Liu C, Wang Q, Wu H. Synergistic effect of WN/Mo2C embedded in bioderived carbon nanofibers: a rational design of a shuttle inhibitor and an electrocatalyst for lithium–sulfur batteries. ACS Appl Mater Interfaces. 2022;14(16):18578. https://doi.org/10.1021/acsami.2c02836.

    Article  CAS  PubMed  Google Scholar 

  125. He JR, Bhargav A, Manthiram A. High-performance anode-free Li-S batteries with an integrated Li2S-electrocatalyst cathode. ACS Energy Lett. 2022;7(2):583. https://doi.org/10.1021/acsenergylett.1c02569.

    Article  CAS  Google Scholar 

  126. Suo LM, Zhu YJ, Han FD, Gao T, Luo C, Fan XL, Hu YS, Wang CS. Carbon cage encapsulating nano-cluster Li2S by ionic liquid polymerization and pyrolysis for high performance Li-S batteries. Nano Energy. 2015;13:467. https://doi.org/10.1016/j.nanoen.2015.02.021.

    Article  CAS  Google Scholar 

  127. Yang Y, Zheng GY, Misra S, Nelson J, Toney MF, Cui Y. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J Am Chem Soc. 2012;134(37):15387. https://doi.org/10.1021/ja3052206.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang JF, Wang J, Qian MM, Zhao B, Wang R, Hao XC, Huang XW, Shao RW, Xing ZY, Xie J, Xu B, Su YF, Wu F, Tan GQ. Lithiothermic-synchronous construction of Mo-Li2S-graphene nanocomposites for high-energy Li2S//Si-C battery. Adv Func Mater. 2022;32(1):2108305. https://doi.org/10.1002/adfm.202108305.

    Article  CAS  Google Scholar 

  129. Li ZJ, Luo C, Zhang SW, Sun GM, Ma JB, Wang XL, He YB, Kang FY, Yang QH, Lv W. Co-recrystallization induced self-catalytic Li2S cathode fully interfaced with sulfide catalyst toward a high-performance lithium-free sulfur battery. Infomat. 2022;4(10):e1361. https://doi.org/10.1002/inf2.12361.

    Article  CAS  Google Scholar 

  130. Yang HL, Lei YJ, Yang QR, Zhang BW, Gu QF, Wang YX, Chou SL, Liu HK, Dou SX. Cobalt-induced highly-electroactive Li2S heterostructured cathode for Li-S batteries. Electrochim Acta. 2023;439:141652. https://doi.org/10.1016/j.electacta.2022.141652.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Yunnan Fundamental Research Projects (Nos. 202101BE070001-018 and 202201AT070070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Yong Zhang or Xue Li.

Ethics declarations

Conflict of interests

The author declares that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yang, CM., Wang, YQ. et al. Heterostructure: application of absorption-catalytic center in lithium–sulfur batteries. Rare Met. 43, 1461–1487 (2024). https://doi.org/10.1007/s12598-023-02486-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02486-8

Keywords

Navigation