Skip to main content
Log in

Cage-confinement synthesis of MoC nanoclusers as efficient sulfiphilic and lithiophilic regulator for superior Li–S batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High-energy-density Li-S batteries are subjected to serious sulfur deactivation and short cycle lifetime caused by undesirable polysulfide shuttle effect and frantic lithium dendrite formation. In this work, a controllable cage-confinement strategy to fabricate molybdenum carbide (MoC) nanoclusters as a high-efficient sulfiphilic and lithiophilic regulator to mitigate the formidable issues of Li-S batteries is demonstrated. The sub-2 nm MoC nanoclusters not only guarantee robust chemisorption and fast electrocatalytic conversion of polysulfides to enhance the sulfur electrochemistry, but also homogenize Li+ flux to suppress the lithium dendrite growth. As a consequence, the MoC-modified separator endows the batteries with boosted reaction kinetics, promoted sulfur utilization, and improved cycling stability. A reversible capacity of 701 mAh·g−1 at a high rate of 5.0C and a small decay rate of 0.076% per cycle at 1.0C over 600 cycles are achieved. This study offers a rational route for design and synthesis of bifunctional nanoclusers with both sulfiphilicity and lithiophilicity for high-performance Li-S batteries.

Graphical abstract

摘要

高比能锂硫电池因其多硫化物穿梭效应和锂枝晶的问题导致活性物质快速损失且循环稳定性差。本研究报道了一种可控的笼式限域策略来制备碳化钼(MoC)纳米团簇,并将其用作高效的亲硫性和亲锂性调节器以解决上述问题。MoC纳米团簇的尺寸在2 nm以下,对多硫化物具有较强的化学吸附以及快速的电催化转化能力,提高了硫正极的电化学性能。此外,该纳米团簇还有利于均匀Li+通量,从而抑制了锂枝晶的生长。因此,基于MoC团簇修饰的隔膜能够有效提高锂硫电池的反应动力学,显著提升了活性硫的电化学利用率及其循环稳定性。电池在5 C的高倍率下实现了701 mAh·g-1的可逆比容量,同时在1 C@600次循环过程中的衰减率低至0.076%每圈。这项研究为设计和合成用于高性能锂硫电池的亲硫/亲锂特性的双功能纳米团簇提供了新的途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A Perspective toward practical lithium-sulfur batteries. ACS Cent Sci. 2020;6(7):1095. https://doi.org/10.1021/acscentsci.0c00449.

    Article  CAS  Google Scholar 

  2. Ji XL, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater. 2009;8(6):500. https://doi.org/10.1038/nmat2460.

    Article  CAS  Google Scholar 

  3. Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature. 2018;559(7715):556. https://doi.org/10.1038/s41586-018-0347-0.

    Article  CAS  Google Scholar 

  4. Dörfler S, Althues H, Härtel P, Abendroth T, Schumm B, Kaskel S. Challenges and key parameters of lithium-sulfur batteries on pouch cell level. Joule. 2020;4(3):539. https://doi.org/10.1016/j.joule.2020.02.006.

    Article  CAS  Google Scholar 

  5. Pang Q, Shyamsunder A, Narayanan B, Kwok CY, Curtiss LA, Nazar LF. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat Energy. 2018;3(9):783. https://doi.org/10.1038/s41560-018-0214-0.

    Article  CAS  Google Scholar 

  6. Hou LP, Zhang XQ, Li BQ, Zhang Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries. Mater Today. 2021;45:62. https://doi.org/10.1016/j.mattod.2020.10.021.

    Article  CAS  Google Scholar 

  7. Tsao Y, Lee M, Miller EC, Gao G, Park J, Chen S, Katsumata T, Tran H, Wang LW, Toney MF, Cui Y, Bao Z. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li–S batteries. Joule. 2019;3(3):872. https://doi.org/10.1016/j.joule.2018.12.018.

    Article  CAS  Google Scholar 

  8. Chen X, Peng HJ, Zhang R, Hou TZ, Huang JQ, Li B, Zhang Q. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2017;2(4):795. https://doi.org/10.1021/acsenergylett.7b00164.

    Article  CAS  Google Scholar 

  9. Zhao C, Xu GL, Yu Z, Zhang L, Hwang I, Mo YX, Ren Y, Cheng L, Sun CJ, Ren Y, Zuo X, Li JT, Sun SG, Amine K, Zhao T. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat Nanotechnol. 2021;16(2):166. https://doi.org/10.1038/s41565-020-00797-w.

    Article  CAS  Google Scholar 

  10. Pang Q, Liang X, Kwok CY, Nazar LF. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy. 2016;1(9):16132. https://doi.org/10.1038/nenergy.2016.132.

    Article  CAS  Google Scholar 

  11. Zhu Q, Xu HF, Shen K, Zhang YZ, Li B, Yang SB. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium-sulfur batteries. Rare Met. 2022;41(1):311. https://doi.org/10.1007/s12598-021-01839-5.

    Article  CAS  Google Scholar 

  12. He G, Ji X, Nazar L. High, “C” rate Li-S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ Sci. 2011;4(8):2878. https://doi.org/10.1039/c1ee01219c.

    Article  CAS  Google Scholar 

  13. Zuo JH, Zhai PB, He QQ, Wang L, Chen Q, Gu XK, Yang ZL, Gong YJ. In-situ constructed three-dimensional MoS2-MoN heterostructure as the cathode of lithium-sulfur battery.Rare Met. 2022;41(5):1743. https://doi.org/10.1007/s12598-021-01910-1.

    Article  CAS  Google Scholar 

  14. Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes. Chem Soc Rev. 2013;42(7):3018. https://doi.org/10.1039/c2cs35256g.

    Article  CAS  Google Scholar 

  15. Zhou G, Yin LC, Wang DW, Li L, Pei S, Gentle IR, Li F, Cheng HM. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano. 2013;7(6):5367. https://doi.org/10.1021/nn401228t.

    Article  CAS  Google Scholar 

  16. Wang SM, Li HN, Zhao GF, Xu LF, Liu DL, Sun YJ, Guo H. Ni3FeN anchored on porous carbon as electrocatalyst for advanced Li-S batteries. Rare Met. 2023;42(2):515. https://doi.org/10.1007/s12598-022-02140-9.

    Article  CAS  Google Scholar 

  17. Pei F, An T, Zang J, Zhao X, Fang X, Zheng M, Dong Q, Zheng N. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries. Adv Energy Mater. 2016;6(8):1502539. https://doi.org/10.1002/aenm.201502539.

    Article  CAS  Google Scholar 

  18. Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev. 2016;45(20):5605. https://doi.org/10.1039/c5cs00410a.

    Article  CAS  Google Scholar 

  19. Wang D, Zhao ZY, Wang P, Wang SM, Feng M. Synthesis of MOF-derived nitrogen-doped carbon microtubules via template self-consumption. Rare Met. 2022;41(8):2582. https://doi.org/10.1007/s12598-022-01987-2.

    Article  CAS  Google Scholar 

  20. Song Y, Cai W, Kong L, Cai J, Zhang Q, Sun J. Rationalizing electrocatalysis of Li-S chemistry by mediator design: progress and prospects. Adv Energy Mater. 2019;10(11):1901075. https://doi.org/10.1002/aenm.201901075.

    Article  CAS  Google Scholar 

  21. Zhou G, Tian H, Jin Y, Tao X, Liu B, Zhang R, Seh ZW, Zhuo D, Liu Y, Sun J, Zhao J, Zu C, Wu DS, Zhang Q, Cui Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. Proc Natl Acad Sci USA. 2017;114(5):840. https://doi.org/10.1073/pnas.1615837114.

    Article  CAS  Google Scholar 

  22. Liu T, Hu H, Ding X, Yuan H, Jin C, Nai J, Liu Y, Wang Y, Wan Y, Tao X. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 2020;30:346. https://doi.org/10.1016/j.ensm.2020.05.023.

    Article  Google Scholar 

  23. Zuo JH, Zhai PB, He QQ, Wang L, Chen Q, Gu XK, Yang ZL, Gong YJ. In-situ constructed three-dimensional MoS2–MoN heterostructure as the cathode of lithium–sulfur battery. Rare Met. 2022;41(5):1743. https://doi.org/10.1007/s12598-021-01910-1.

    Article  CAS  Google Scholar 

  24. Xu J, Xu L, Zhang Z, Sun B, Jin Y, Jin Q, Liu H, Wang G. Heterostructure ZnSe-CoSe2 embedded with yolk-shell conductive dodecahedral as two-in-one hosts for cathode and anode protection of lithium–sulfur full batteries. Energy Storage Mater. 2022;47:223. https://doi.org/10.1016/j.ensm.2022.02.010.

    Article  Google Scholar 

  25. Ye Z, Jiang Y, Yang T, Li L, Wu F, Chen R. Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv Sci. 2022;9(1):2103456. https://doi.org/10.1002/advs.202103456.

    Article  CAS  Google Scholar 

  26. Wang P, Xi B, Huang M, Chen W, Feng J, Xiong S. Emerging catalysts to promote kinetics of lithium-sulfur batteries. Adv Energy Mater. 2021;11(7):2002893. https://doi.org/10.1002/aenm.202002893.

    Article  CAS  Google Scholar 

  27. Wei C, Tian M, Fan Z, Yu L, Song Y, Yang X, Shi Z, Wang M, Yang R, Sun J. Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced Li-S full batteries. Energy Storage Mater. 2021;41:141. https://doi.org/10.1016/j.ensm.2021.05.030.

    Article  Google Scholar 

  28. Song CL, Li ZH, Ma LY, Li MZ, Huang S, Hong XJ, Cai YP, Lan YQ. Single-atom zinc and anionic framework as janus separator coatings for efficient inhibition of lithium dendrites and shuttle effect. ACS Nano. 2021;15(8):13436. https://doi.org/10.1021/acsnano.1c03876.

    Article  CAS  Google Scholar 

  29. He Y, Chang Z, Wu S, Qiao Y, Bai S, Jiang K, He P, Zhou H. Simultaneously Inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv Energy Mater. 2018;8(34):1802130. https://doi.org/10.1002/aenm.201802130.

    Article  CAS  Google Scholar 

  30. Li Y, Wang C, Wang W, Eng AYS, Wan M, Fu L, Mao E, Li G, Tang J, Seh ZW, Sun Y. Enhanced chemical immobilization and catalytic conversion of polysulfide intermediates using metallic Mo nanoclusters for high-performance Li-S batteries. ACS Nano. 2020;14(1):1148. https://doi.org/10.1021/acsnano.9b09135.

    Article  CAS  Google Scholar 

  31. Ranjan R, Tsapatsis M. Microporous metal organic framework membrane on porous support using the seeded growth method. Chem Mater. 2009;21(20):4920. https://doi.org/10.1021/cm902032y.

    Article  CAS  Google Scholar 

  32. Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D, Li Y. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed. 2017;56(24):6937. https://doi.org/10.1002/anie.201702473.

    Article  CAS  Google Scholar 

  33. Kou Z, Zang W, Ma Y, Pan Z, Mu S, Gao X, Tang B, Xiong M, Zhao X, Cheetham AK, Zheng L, Wang J. Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: from isolated atoms to clusters and nanoparticles. Nano Energy. 2020;67:104288. https://doi.org/10.1016/j.nanoen.2019.104288.

    Article  CAS  Google Scholar 

  34. Zhang XY, Lv XL, Wei CG, Wang JG. Highly sulfiphilic zinc selenide/carbon regulators for high-capacity and long-lifespan Li–S batteries. Appl Surf Sci. 2021;568:150952. https://doi.org/10.1016/j.apsusc.2021.150952.

    Article  CAS  Google Scholar 

  35. Yu B, Chen D, Wang Z, Qi F, Zhang X, Wang X, Hu Y, Wang B, Zhang W, Chen Y, He J, He W. Mo2C quantum dots@graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li-S batteries. Chem Eng J. 2020;399:125837. https://doi.org/10.1016/j.cej.2020.125837.

    Article  CAS  Google Scholar 

  36. Feng W, Yuan J, Gao F, Weng B, Hu W, Lei Y, Huang X, Yang L, Shen J, Xu D, Zhang X, Liu P, Zhang S. Piezopotential-driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N-doped graphene vesicles for superhigh H2 production from pure water. Nano Energy. 2020;75:104990. https://doi.org/10.1016/j.nanoen.2020.104990.

    Article  CAS  Google Scholar 

  37. Kou Z, Wang T, Gu Q, Xiong M, Zheng L, Li X, Pan Z, Chen H, Verpoort F, Cheetham AK, Mu S, Wang J. Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation. Adv Energy Mater. 2019;9(16):1803768. https://doi.org/10.1002/aenm.201803768.

    Article  CAS  Google Scholar 

  38. Yao W, Zheng W, Xu J, Tian C, Han K, Sun W, Xiao S. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano. 2021;15(4):7114. https://doi.org/10.1021/acsnano.1c00270.

    Article  CAS  Google Scholar 

  39. Chen Y, Wang T, Tian H, Su D, Zhang Q, Wang G. Advances in lithium-sulfur batteries: from academic research to commercial viability. Adv Mater. 2021;33(29):2003666. https://doi.org/10.1002/adma.202003666.

    Article  CAS  Google Scholar 

  40. Shi Z, Sun Z, Cai J, Fan Z, Jin J, Wang M, Sun J. Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li-S batteries. Adv Funct Mater. 2020;31(4):2006798. https://doi.org/10.1002/adfm.202006798.

    Article  CAS  Google Scholar 

  41. Wang M, Song Y, Sun Z, Shao Y, Wei C, Xia Z, Tian Z, Liu Z, Sun J. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium-sulfur batteries. ACS Nano. 2019;13(11):13235. https://doi.org/10.1021/acsnano.9b06267.

    Article  CAS  Google Scholar 

  42. Yao Y, Wang H, Yang H, Zeng S, Xu R, Liu F, Shi P, Feng Y, Wang K, Yang W, Wu X, Luo W, Yu Y. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li–S full batteries. Adv Mater. 2020;32(6):1905658. https://doi.org/10.1002/adma.201905658.

    Article  CAS  Google Scholar 

  43. Zhang XY, Gu HH, Shen C, Wei BQ, Wang JG. Catalytic boosting bidirectional polysulfide redox using Co0.85Se/C hollow structure for high-performance lithium-sulfur batteries. Chem Electro Chem. 2022;9(4):20210155. https://doi.org/10.1002/celc.202101557.

    Article  CAS  Google Scholar 

  44. Tang TY, Zhang LG, Guo ZF, Gu XX. Development of cathode and anode materials in lithium sulfur batteries. Chin J Rare Met. 2022;46(7):954. https://doi.org/10.13373/j.cnki.cjrm.XY21070001.

    Article  CAS  Google Scholar 

  45. Fan FY, Carter WC, Chiang YM. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv Mater. 2015;27(35):5203. https://doi.org/10.1002/adma.201501559.

    Article  CAS  Google Scholar 

  46. Liu W, Liu P, Mitlin D. Tutorial review on structure-dendrite growth relations in metal battery anode supports. Chem Soc Rev. 2020;49(20):7284. https://doi.org/10.1039/d0cs00867b.

    Article  CAS  Google Scholar 

  47. Jiang P, Liao Y, Liu W, Chen Y. Alternating nanolayers as lithiophilic scaffolds for Li-metal anode. J Energy Chem. 2021;57:131. https://doi.org/10.1016/j.jechem.2020.08.034.

    Article  CAS  Google Scholar 

  48. Wang J, Li G, Luo D, Zhao Y, Zhang Y, Zhou G, Shui L, Wang X. Amorphous-crystalline-heterostructured niobium oxide as two-in-one host matrix for high-performance lithium-sulfur batteries. J Mater Chem A. 2021;9(18):11160. https://doi.org/10.1039/d1ta00284h.

    Article  CAS  Google Scholar 

  49. Ye H, Zheng ZJ, Yao HR, Liu SC, Zuo TT, Wu XW, Yin YX, Li NW, Gu JJ, Cao FF, Guo YG. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew Chem Int Ed. 2019;58(4):1094. https://doi.org/10.1002/anie.201811955.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the research funds from the National Natural Science Foundation of China (No. 52272239), the Fundamental Research Funds for the Central Universities (Nos. D5000210894 and 3102019JC005) and the Analytical & Testing Center of Northwestern Polytechnical University for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Gan Wang.

Ethics declarations

Conflict of interests

Jian-Gan Wang is an editorial board member for Rare Metals and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2459 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XY., Lei, MN., Tian, S. et al. Cage-confinement synthesis of MoC nanoclusers as efficient sulfiphilic and lithiophilic regulator for superior Li–S batteries. Rare Met. 43, 624–634 (2024). https://doi.org/10.1007/s12598-023-02455-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02455-1

Keywords

Navigation