Skip to main content
Log in

Vertically grown MoS2 nanosheets on graphene with defect-rich structure for efficient sodium storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The synthesis of a perpendicular growth structure of MoS2 nanosheets on graphene for efficient sodium storage is challenging yet ideal due to the benefits of open ion diffusion channels and high electronic conductivity. In this study, we have successfully fabricated a novel structure of vertical MoS2 nanosheets on graphene, with ZnS nanoparticles serving as bonding points (MoS2/ZnS/G), through a facile hydrothermal method. During the synthesis process, Zn2+ not only acts as a landing site for the vertical growth of MoS2 nanosheets but also triggers the formation of a defect-rich structure in the final samples. This unique architecture of MoS2/ZnS/G effectively combines the advantages of a vertically aligned geometry and a defect-rich structure for energy storage. The resulting structure displays shortened transport paths for electrons/ions, enhanced conductivity, improved structural integrity, and an increased number of active sites for promising electrochemical performance. As expected, when used as anode for sodium-ion batteries, the as-synthesized MoS2/ZnS/G exhibits excellent rate capability (high capacity of 298 mAh·g−1 at 5 A·g−1) and good cycling stability (a capacity decay of 0.056% per cycle after 500 cycles at 1 A·g−1). According to the kinetic investigations, the electrochemical process of the MoS2/ZnS/G sample is primarily governed by a pseudocapacitive behavior, which enhances the charge/discharge kinetics and allows the MoS2/ZnS/G structure to remain intact during cycling.

Graphical abstract

摘要

近年来,钠离子电池(SIBs)作为锂离子电池(LIBs)的一种有前景的替代品,由于其低成本和天然丰富的钠资源而受到越来越多的关注。然而,与Li+相比,Na+的离子半径更大,反应动力学更慢,在循环过程中往往导致电极发生严重的体积膨胀和极化,致使电池的循环寿命差,可逆容量低。因此,设计合理的电极材料,提高电化学性能,是实现SIBs实际应用的关键。在本文中,我们通过简单的水热法,以ZnS纳米颗粒作为键合点,成功地在石墨烯上制备了一种新型的垂直生长的MoS2纳米片结构(MoS2/ZnS/G)。在合成过程中,Zn2+不仅作为MoS2纳米片垂直生长的着落点,而且触发了最终样品中富缺陷结构的形成。这种独特的MoS2/ZnS/G结构有效地结合了垂直排列的几何形状和富含缺陷的储能结构的优点。所得到的结构使得材料的电子/离子传输路径缩短,电导率增强,结构完整性改善,活性位点数量增加,具有良好的电化学性能。正如预期的那样,当用作钠离子电池的负极时,合成的MoS2/ZnS/G表现出优异的倍率性能(在5 A g−1下的高容量为298 mAh g−1)和良好的循环稳定性(在1 A g−1电路密度下可下循环500次,每周循环容量衰减0.056%)。动力学研究表明,MoS2/ZnS/G样品的电化学过程主要由赝电容行为控制,这增强了MoS2/ZnS/G材料的动力学性能,并使其在循环过程中保持完整的结构。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu YF, Xiao Y, Dou SX, Kang YM, Chou SL. Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience. 2021;1(1):13. https://doi.org/10.1016/j.esci.2021.10.003.

    Article  Google Scholar 

  2. Liu C, Zhang ZX, Tan R, Deng JW, Li QH, Duan XC. Design of cross-welded Na3V2(PO4)3/C nanofibrous mats and their application in sodium-ion batteries. Rare Met. 2022;41(3):806. https://doi.org/10.1007/s12598-021-01825-x.

    Article  CAS  Google Scholar 

  3. Sun YY, Li SQ, Wang CR, Qian YX, Zheng SY, Yuan T. Research progress of layered transition metal oxide cathode materials for sodium ion batteries. Chin J Rare Met. 2022;46(6):776. https://doi.org/10.13373/j.cnki.cjrm.XY22020014.

    Article  Google Scholar 

  4. Chen H, Sun N, Zhu QZ, Soomro RA, Xu B. Microcrystalline hybridization enhanced coal−based carbon anode for advanced sodium-ion batteries. Adv Sci. 2022;9:2200023. https://doi.org/10.1002/advs.202200023.

    Article  CAS  Google Scholar 

  5. Chen H, Sun N, Wang YX, Soomro RA, Xu B. One stone two birds: pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium−ion batteries. Energy Storage Mater. 2023;56:532. https://doi.org/10.1016/j.ensm.2023.01.042.

    Article  Google Scholar 

  6. Ramachandran K, Subburam G, Liu XH, Huang MG, Xu C, Ng DHL, Cui YX, Li GC, Qiu JX, Wang C, Lian JB. Nitrogen-doped porous carbon nanofoams with enhanced electrochemical kinetics for superior sodium-ion capacitor. Rare Met. 2022;41(7):2481. https://doi.org/10.1007/s12598-022-01992-5.

    Article  CAS  Google Scholar 

  7. Zhu L, Yang XX, Xiang YH, Kong P, Wu XW. Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. Rare Met. 2020;40(6):1383. https://doi.org/10.1007/s12598-020-01555-6.

    Article  CAS  Google Scholar 

  8. Huang M, Liu JX, Huang P, Hu H, Lai C. Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries. Rare Met. 2020;40(2):425. https://doi.org/10.1007/s12598-020-01527-w.

    Article  CAS  Google Scholar 

  9. Li QD, Wei QL, Zuo WB, Huang L, Luo W, An QY, Pelenovich VO, Mai LQ, Zhang QJ. Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem Sci. 2017;8:160. https://doi.org/10.1039/c6sc02716d.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang ZW, Zhong XB, Zhang YH, Tang MY, Li SX, Zhang HH, Hu PF, Liang JF. Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries. Rare Met. 2022;41(1):21. https://doi.org/10.1007/s12598-021-01835-9.

    Article  CAS  Google Scholar 

  11. Shi SS, Sun CL, Yin XP, Shen LY, Shi QH, Zhao KN, Zhao YF, Zhang JJ. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications. Adv Funct Mater. 2020;30:1909283. https://doi.org/10.1002/adfm.201909283.

    Article  CAS  Google Scholar 

  12. Yu BA, Ji YX, Hu X, Liu YJ, Yuan J, Lei S, Zhong GB, Weng ZX, Zhan HB, Wen ZH. Heterostructured Cu2S@ZnS/C composite with fast interfacial reaction kinetics for high-performance 3D-printed sodium-Ion batteries. Chem Eng J. 2022;430: 132993. https://doi.org/10.1016/j.cej.2021.132993.

    Article  CAS  Google Scholar 

  13. Zhang BL, Chen X, Zhao HJ, Xie HW, Yin HY. Electrochemically exfoliated WS2 in molten salt for sodium-ion battery anode. Rare Met. 2023;42(4):1227. https://doi.org/10.1007/s12598-022-02209-5.

    Article  CAS  Google Scholar 

  14. Xu H, Wang WJ, Qin LG, Yu GX, Ren LH, Jiang YQ, Chen J. Controllable synthesis of anatase TiO2 nanosheets grown on amorphous TiO2/C frameworks for ultrafast pseudocapacitive sodium storage. ACS Appl Mater Interfaces. 2020;12(39):43813. https://doi.org/10.1021/acsami.0c13142.

    Article  CAS  PubMed  Google Scholar 

  15. Guo YM, Zhang LJ, XiLi D, Kang J. Advances of carbon materials as loaders for transition metal oxygen/sulfide anode materials. Chin J Rare Met. 2021;45(10):1241. https://doi.org/10.13373/j.cnki.cjrm.XY20040016.

    Article  Google Scholar 

  16. Ju JH, Chen YT, Liu ZQ, Huang C, Li YQ, Kong DZ, Shen W, Tang S. Modification and application of Fe3O4 nanozymes in analytical chemistry: a review. Chinese Chem Lett. 2023;34(5): 107820. https://doi.org/10.1016/j.cclet.2022.107820.

    Article  CAS  Google Scholar 

  17. Cheng SL, Yin XP, Sarkar S, Wang ZW, Huang QA, Zhang JJ, Zhao YF. A novel Mo8.7Nb6.1Ox@NCs egg-nest composite structure as superior anode material for lithium-ion storage. Rare Met. 2022;41(8):2645. https://doi.org/10.1007/s12598-021-01952-5.

    Article  CAS  Google Scholar 

  18. Choi SH, Ko YN, Lee JK, Kang YC. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater. 2015;25(12):1780. https://doi.org/10.1002/adfm.201402428.

    Article  CAS  Google Scholar 

  19. Xu X, Zhao RS, Ai W, Chen B, Du HF, Wu LS, Zhang H, Huang W, Yu T. Controllable design of MoS2 nanosheets anchored on nitrogen−doped graphene: Toward fast sodium storage by tunable pseudocapacitance. Adv Mater. 2018;30(27):1800658. https://doi.org/10.1002/adma.201800658.

    Article  CAS  Google Scholar 

  20. Li SW, Liu YC, Zhao XD, Shen QY, Zhao W, Tan QW, Zhang N, Li P, Jiao LF, Qu XH. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv Mater. 2021;33(12):2007480. https://doi.org/10.1002/adma.202007480.

    Article  CAS  Google Scholar 

  21. Li H, Wen XZ, Shao F, Xu SW, Zhou C, Zhang YF, Wei H, Hu NT. Interlayer−expanded MoS2 vertically anchored on graphene via C−O−S bonds for superior sodium−ion batteries. J Alloys Compd. 2021;877: 160280. https://doi.org/10.1016/j.jallcom.2021.160280.

    Article  CAS  Google Scholar 

  22. Teng YQ, Zhao HL, Zhang ZJ, Li ZL, Xia Q, Zhang Y, Zhao LN, Du XF, Du ZH, Lv PP, Świerczek K. MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano. 2016;10(9):8526. https://doi.org/10.1021/acsnano.6b03683.

    Article  CAS  PubMed  Google Scholar 

  23. Wan YH, Song KM, Chen WH, Qin CD, Zhang XX, Zhang JY, Dai HL, Hu Z, Yan PF, Liu CT, Sun SH, Chou SL, Shen CY. Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage. Angew Chem Int Ed. 2021;60:11481. https://doi.org/10.1002/anie.202102368.

    Article  CAS  Google Scholar 

  24. Zhang J, You CY, Lin HZ, Wang J. Electrochemical kinetic modulators in lithium–sulfur batteries: from defect-rich catalysts to single atomic catalysts. Energy Environ Mater. 2022;5:731. https://doi.org/10.1002/eem2.12250.

    Article  CAS  Google Scholar 

  25. Wu JX, Liu JP, Cui J, Yao SS, Ihsan-Ul-Haq M, Mubarak N, Quattrocchi E, Ciucci F, Kim JK. Dual-phase MoS2 as a high-performance sodium-ion battery anode. J Mater Chem A. 2020;8(4):2114. https://doi.org/10.1039/c9ta11913b.

    Article  CAS  Google Scholar 

  26. Yuan J, Zhu JW, Wang RH, Deng YX, Zhang S, Yao C, Li YJ, Li XL, Xu CH. 3D few−layered MoS2/graphene hybrid aerogels on carbon fiber papers: a free−standing electrode for high-performance lithium/sodium-ion batteries. Chem Eng J. 2020;398: 125592. https://doi.org/10.1016/j.cej.2020.125592.

    Article  CAS  Google Scholar 

  27. Yu XL, Li RX, Hu XY, He R, Xue KH, Sun RR, Yang T, Wang WL, Fang X. Enhanced 1T phase promotes sodium storage performances of MoS2 flower-like spheres with embedded reduced graphene oxides. J Solid State Chem. 2021;297: 122027. https://doi.org/10.1016/j.jssc.2021.122027.

    Article  CAS  Google Scholar 

  28. Wang LN, Wu X, Wang FT, Chen X, Xu J, Huang KJ. 1T−Phase MoS2 with large layer spacing supported on carbon cloth for high-performance Na+ storage. J Colloid Interface Sci. 2021;583:579. https://doi.org/10.1016/j.jcis.2020.09.055.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Cao M, Liao F, Wang QQ, Luo WS, Ma YL, Zheng XS, Wang Y, Zhang L. Rational design of ZnS/CoS heterostructures in three dimensional N−doped CNTs for superior lithium storage. J Alloys Compd. 2021;859: 157867. https://doi.org/10.1016/j.jallcom.2020.157867.

    Article  CAS  Google Scholar 

  30. Zhao WX, Gao LX, Yue LC, Wang XY, Liu Q, Luo YL, Li TS, Shi XF, Asiri AM, Sun XP. Constructing a hollow microflower-like ZnS/CuS@C heterojunction as an effective ion-transport booster for an ultrastable and high-rate sodium storage anode. J Mater Chem A. 2021;9(10):6402. https://doi.org/10.1039/d1ta00497b.

    Article  CAS  Google Scholar 

  31. Li JH, Wang HK, Wei W, Meng LJ. Advanced MoS2 and graphene heterostructures as high-performance anode for sodium-ion batteries. Nanotechnology. 2019;30(10): 104003. https://doi.org/10.1088/1361-6528/aaf76c.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Li YF, Mao HJ, Zheng C, Wang JJ, Che ZZ, Wei MD. Compositing reduced graphene oxide with interlayer spacing enlarged MoS2 for performance enhanced sodium-ion batteries. J Phys Chem Solids. 2020;136: 109163. https://doi.org/10.1016/j.jpcs.2019.109163.

    Article  CAS  Google Scholar 

  33. Li JM, Fu Y, Shi X, Xu ZM, Zhang ZA. Urchinlike ZnS microspheres decorated with nitrogen-doped Carbon: a superior anode material for lithium and sodium storage. Chem Eur J. 2017;23(1):157. https://doi.org/10.1002/chem.201604532.

    Article  CAS  PubMed  Google Scholar 

  34. Guo J, Li YQ, Meng JH, Pedersen K, Gurevich L, Stroe DI. Understanding the mechanism of capacity increase during early cycling of commercial NMC/graphite lithium-ion batteries. J Energy Chem. 2022;74:34. https://doi.org/10.1016/j.jechem.2022.07.005.

    Article  CAS  Google Scholar 

  35. Hao XQ, Jiang ZQ, Shang XN, Tian XN, Chen XP, Hao XG, Jiang ZJ. Understanding the role of graphene intercalation layers on both sides of sandwich structured graphene@MoS2@porous graphene anode in promoting sodium storage performance and stability. J Alloys Compd. 2020;845: 155336. https://doi.org/10.1016/j.jallcom.2020.155336.

    Article  CAS  Google Scholar 

  36. Geng XM, Jiao YC, Han Y, Mukhopadhyay A, Yang L, Zhu HL. Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium−ion batteries. Adv Funct Mater. 2017;27(40):1702998. https://doi.org/10.1002/adfm.201702998.

    Article  CAS  Google Scholar 

  37. Dong XY, Xing Z, Zheng GJ, Gao XR, Hong HP, Ju ZC, Zhuang QC. MoS2/N-doped graphene aerogles composite anode for high performance sodium/potassium ion batteries. Electrochim Acta. 2020;339: 135932. https://doi.org/10.1016/j.electacta.2020.135932.

    Article  CAS  Google Scholar 

  38. Fei LF, Xu M, Jiang J, Ng SM, Shu LL, Sun L, Xie KY, Huang HT, Leung CW, Mak CL, Wang Y. Three-dimensional macroporous graphene monoliths with entrapped MoS2 nanoflakes from single-step synthesis for high-performance sodium-ion batteries. RSC Adv. 2018;8(5):2477. https://doi.org/10.1039/c7ra12617d.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Cho SH, Kim JH, Kim IG, Park JH, Jung JW, Kim HS, Kim ID. Reduced graphene-oxide-encapsulated MoS2/carbon nanofiber composite electrode for high-performance Na-ion batteries. Nanomaterials. 2021;11(10):2691. https://doi.org/10.3390/nano11102691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li JH, Tao HC, Zhang YK, Yang XL. Molybdenum disulfide/reduced graphene oxide nanocomposite with expanded interlayer spacing for sodium ion batteries. J Electrochem Soc. 2019;166(15):A3685. https://doi.org/10.1002/eem2.12250.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province (No. BK20211352) and the Nature Science Fundation of Jiangsu Higher Education Institutions of China (No. 22KJA430005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Chang Liu or Qing-Hong Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3744 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., He, JP., Pan, HQ. et al. Vertically grown MoS2 nanosheets on graphene with defect-rich structure for efficient sodium storage. Rare Met. 43, 1062–1071 (2024). https://doi.org/10.1007/s12598-023-02447-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02447-1

Keywords

Navigation