Skip to main content
Log in

Synergistic effect between Er-doped MoS2 nanosheets and interfacial Mo–N coupling phases for enhanced electrocatalytic hydrogen evolution

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Hydrogen production via electrochemical water splitting is a promising and green technology. As one of the most representative transition metal sulfides layered materials, Molybdenum disulfide (MoS2) has immense potential for the hydrogen evolution reaction (HER). We successfully prepared a nitrogen-doped carbon (NC) in situ-grown erbium-doped MoS2 polyhedral structure (Er-MoS2/NC) that incorporates an interfacial Mo–N coupling phase. The Er-MoS2/NC catalyst possesses superior HER catalytic activity with a overpotential of 5 mV at the current density of 10 mA·cm-2 and a small Tafel slope about 76 mV·dec-1 along with excellent stability. The synergistic effect of rare-earth doping and the interfacial Mo–N coupling phase effectively modifies the electronic structure of layered MoS2 by increasing the exposed active sites and further lowering the hydrogen adsorption energy. The present work offers a new avenue for synthesizing multilayer nanostructured materials to improve the performance of sulfide-based materials for electrocatalytic HER.

Graphical abstract

摘要

通过电催化分解水制氢是一项很有前途的绿色技术。作为最具代表性的过渡金属硫化物层状材料之一,二硫化钼(MoS2)在析氢反应(HER)方面具有巨大的潜力。我们成功地制备了一种氮碳骨架(NC)上原位生长的铒掺杂二硫化钼多面体结构(Er-MoS2/NC),其中包含了界面Mo-N耦合相。Er-MoS2/NC催化剂具有优异的HER催化活性,在电流密度为10 mA·cm-2时,过电位为55 mV,Tafel斜率较小,约为76 mV·dec-1,并且具有良好的稳定性。稀土掺杂和界面Mo-N耦合相的协同作用增加了暴露的活性位点和进一步降低氢吸附能量,有效地改变了层状MoS2的电子结构。本工作为合成多层纳米结构材料提供了一个新的策略,以改善硫化物材料的电催化析氢的性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Jiang WJ, Tang T, Zhang Y, Hu JS. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Accounts Chem Res. 2020;53(6):1111. https://doi.org/10.1021/acs.accounts.0c00127.

    Article  CAS  Google Scholar 

  2. Lu YY, Song HL, Li X, Agren H, Liu QY, Zhang JW, Zhang X, Xie YS. Multiply wrapped porphyrin dyes with a phenothiazine donor: a high efficiency of 117% achieved through a synergetic coadsorption and cosensitization approach. Acs Appl Mater Interfaces. 2019;11(5):5046. https://doi.org/10.1021/acsami.8b19077.

    Article  CAS  PubMed  Google Scholar 

  3. Yun SN, Qin Y, Uhl AR, Vlachopoulos N, Yin M, Li DD, Han XG, Hagfeldt A. New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ Sci. 2018;11(3):476. https://doi.org/10.1039/C7EE03165C.

    Article  CAS  Google Scholar 

  4. Liu Z, Zha M, Wang Q, Hu GZ, Feng LG. Overall water-splitting reaction efficiently catalyzed by a novel bi-functional Ru/Ni3N-Ni electrode. Chem Commun. 2020;56(15):2352. https://doi.org/10.1039/C9CC09187D.

    Article  Google Scholar 

  5. Wang Y, Li SZ, Zhang DF, Tan F, Li L, Hu GZ. Self-supported hierarchical P, Cu-codoped cobalt selenide nanoarrays for enhanced overall water splitting. J Alloy Compd. 2021;889:161696. https://doi.org/10.1016/j.jallcom.2021.161696.

    Article  CAS  Google Scholar 

  6. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169. https://doi.org/10.1007/s12598-021-01914-x.

    Article  CAS  Google Scholar 

  7. Deng BL, Guo LP, Lu Y, Rong HB, Cheng DC. Sulfur-nitrogen co-doped graphene supported cobalt-nickel sulfide rGO@SN-CoNi2S4 as highly efficient bifunctional catalysts for hydrogen/oxygen evolution reactions. Rare Met. 2022;41(3):911. https://doi.org/10.1007/s12598-021-01828-8.

    Article  CAS  Google Scholar 

  8. Yuan FH, Mohammadi MR, Ma LL, Cui ZD, Zhu SL, Li ZY, Wu SL, Jiang H, Liang YQ. Electrodeposition of self-supported NiMo amorphous coating as an efficient and stable catalyst for hydrogen evolution reaction. Rare Met. 2022;41(8):2624. https://doi.org/10.1007/s12598-022-01967-6.

    Article  CAS  Google Scholar 

  9. Sun HM, Yan ZH, Liu FM, Xu WC, Cheng FY, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater. 2020;32(3):1806326. https://doi.org/10.1002/adma.201806326.

    Article  CAS  Google Scholar 

  10. Zhu J, Hu LS, Zhao PX, Lee LYS, Wong KY. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev. 2020;120(2):851. https://doi.org/10.1021/acs.chemrev.9b00248.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Z, Yang XD, Hu GZ, Feng LG. Ru nanoclusters coupled on Co/N-doped carbon nanotubes efficiently catalyzed the hydrogen evolution reaction. Acs Sustain Chem Eng. 2020;8(24):9136. https://doi.org/10.1021/acssuschemeng.0c02636.

    Article  CAS  Google Scholar 

  12. Zhang L, Zhu YX, Nie ZC, Li ZY, Ye Y, Li LH, Hong J, Bi ZH, Zhou YT, Hu GZ. Co/MoC nanoparticles embedded in carbon nanoboxes as robust trifunctional electrocatalysts for a Zn-air battery and water electrocatalysis. ACS Nano. 2021;15(8):13399. https://doi.org/10.1021/acsnano.1c03766.

    Article  CAS  PubMed  Google Scholar 

  13. Sun PL, Zhou YT, Li HY, Zhang H, Feng LG, Cao QE, Liu SX, Wagberg T, Hu GZ. Round-the-clock bifunctional honeycomb-like nitrogen-doped carbon-decorated Co2P/Mo2C-heterojunction electrocatalyst for direct water splitting with 18.1% STH efficiency. Appl Catal B. 2022;310:121354. https://doi.org/10.1016/j.apcatb.2022.121354.

    Article  CAS  Google Scholar 

  14. Peng W, Li XG, He ZM, Li ZS, Zhang XY, Sun XP, Li Q, Yang H, Han JT, Huang YH. Electron density modulation of MoP by rare earth metal as highly efficient electrocatalysts for pH-universal hydrogen evolution reaction. Appl Catal B. 2021;299:120657. https://doi.org/10.1016/j.apcatb.2021.120657.

    Article  CAS  Google Scholar 

  15. Yin ZZ, He RZ, Zhang YC, Feng LG, Wu X, Wagberg T, Hu GZ. Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction. J Energy Chem. 2022;69:585. https://doi.org/10.1016/j.jechem.2022.01.020.

    Article  CAS  Google Scholar 

  16. Zhao X, Li X, Bi ZH, Wang YW, Zhang HB, Zhou XH, Wang Q, Zhou YT, Wang HS, Hu GZ. Boron modulating electronic structure of FeN4C to initiate high-efficiency oxygen reduction reaction and high-performance zinc-air battery. J Energy Chem. 2022;66:514. https://doi.org/10.1016/j.jechem.2021.08.067.

    Article  CAS  Google Scholar 

  17. Qiao MF, Wang Y, Wagberg T, Mamat X, Hu X, Zou GA, Hu GZ. Ni-Co bimetallic coordination effect for long lifetime rechargeable Zn-air battery. J Energy Chem. 2020;47:146. https://doi.org/10.1016/j.jechem.2019.12.005.

    Article  Google Scholar 

  18. Zhang CX, Liu HX, Liu YF, Liu XJ, Mi YY, Guo RJ, Sun JQ, Bao HH, He J, Qiu Y, Ren JQ, Yang XJ, Luo J, Hu GZ. Rh2S3/N-doped carbon hybrids as pH-universal bifunctional electrocatalysts for energy-saving hydrogen evolution. Small Methods. 2020;4(9):2000208. https://doi.org/10.1002/smtd.202000208.

    Article  CAS  Google Scholar 

  19. Li GQ, Zhang D, Yu YF, Huang SY, Yang WT, Cao LY. Activating MoS2 for pH-universal hydrogen evolution catalysis. J Am Chem Soc. 2017;139(45):16194. https://doi.org/10.1021/jacs.7b07450.

    Article  CAS  PubMed  Google Scholar 

  20. Li SZ, Zang WJ, Liu XM, Pennycook SJ, Kou ZK, Yang CH, Guan C, Wang J. Heterojunction engineering of MoSe2/MoS2 with electronic modulation towards synergetic hydrogen evolution reaction and supercapacitance performance. Chem Eng J. 2019;359:1419. https://doi.org/10.1016/j.cej.2018.11.036.

    Article  CAS  Google Scholar 

  21. Liang K, Pakhira S, Yang ZZ, Nijamudheen A, Ju LC, Wang MY, Aguirre-Velez CI, Sterbinsky GE, Du YG, Feng ZX, Mendoza-Cortes JL, Yang Y. S-doped MoP nanoporous layer toward high-efficiency hydrogen evolution in pH-universal electrolyte. Acs Catal. 2019;9(1):651. https://doi.org/10.1021/acscatal.8b04291.

    Article  CAS  Google Scholar 

  22. Zhou Y, Zhang JT, Ren H, Pan Y, Yan YG, Sun FC, Wang XY, Wang ST, Zhang J. Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution. Appl Catal B. 2020;268:118467. https://doi.org/10.1016/j.apcatb.2019.118467.

    Article  CAS  Google Scholar 

  23. Xu J, Shao GL, Tang X, Lv F, Xiang HY, Jing CF, Liu S, Dai S, Li YG, Luo J, Zhou Z. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Na Commun. 2022;13(1):2193. https://doi.org/10.1038/s41467-022-29929-7.

    Article  ADS  CAS  Google Scholar 

  24. Zang YP, Niu SW, Wu YS, Zheng XS, Cai JY, Yee J, Xie YF, Liu Y, Zhou JB, Zhu JF, Liu XJ, Wang GM, Qian YT. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat Commun. 2019;10:1217. https://doi.org/10.1038/s41467-019-09210-0.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng J, Xu L, Luo X, Chen T, Tang SH, Huang X, Wang LL. Z-scheme systems of ASi2N4 (A = Mo or W) for photocatalytic water splitting and nanogenerators. Tungsten. 2022;4(1):52. https://doi.org/10.1007/s42864-021-00116-3.

    Article  Google Scholar 

  26. Chen JZ, Wu XJ, Lu QP, Zhao MT, Yin PF, Ma QL, Nam GH, Li B, Chen B, Zhang H. Preparation of CdSySe1-y-MoS2 heterostructures via cation exchange of pre-epitaxially synthesized Cu2-chi SySe1-y-MoS2 for photocatalytic hydrogen evolution. Small. 2021;17(11):2006135. https://doi.org/10.1002/smll.202006135.

    Article  CAS  Google Scholar 

  27. Liu J, Wang SL, Xuan JL, Shan BF, Luo H, Deng LP, Yang P, Qi CZ. Preparation of tungsteniron composite oxides and application in environmental catalysis for volatile organic compounds degradation. Tungsten. 2022;4(1):38. https://doi.org/10.1007/s42864-021-00128-z.

    Article  Google Scholar 

  28. Wang YZ, Liu SS, Hao XF, Zhou JS, Song DD, Wang D, Hou L, Gao FM. Fluorine- and nitrogen-codoped MoS2 with a catalytically active basal plane. Acs Appl Mater Interfaces. 2017;9(33):27715. https://doi.org/10.1021/acsami.7b06795.

    Article  CAS  PubMed  Google Scholar 

  29. Wu J, Li P, Parra-Puerto A, Wu S, Lin XQ, Kramer D, Chen SL, Kucernak A. Controllable heteroatom doping effects of CrxCo2-xP nanoparticles: a robust electrocatalyst for overall water splitting in alkaline solutions. Acs Appl Mater Interfaces. 2020;12(42):47397. https://doi.org/10.1021/acsami.0c10441.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang H, Aierke A, Zhou YT, Ni ZT, Feng LG, Chen AR, Wagberg T, Hu GZ. A high-performance transition-metal phosphide electrocatalyst for converting solar energy into hydrogen at 19.6% STH efficiency. Carbon Energy. 2022;09(4):12. https://doi.org/10.1002/cey2.217.

    Article  CAS  Google Scholar 

  31. Gao W, Yan M, Cheung HY, Xia ZM, Zhou XM, Qin YB, Wong CY, Qu YQ, Chang CR, Ho JC. Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy. 2017;38:290. https://doi.org/10.1016/j.nanoen.2017.06.002.

    Article  CAS  Google Scholar 

  32. Amiinu IS, Pu Z, Liu X, Owusu KA, Monestel HGR, Boakye FO, Zhang H, Mu S. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv Funct Mater. 2017;27(44):1702300. https://doi.org/10.1002/adfm.201702300.

    Article  CAS  Google Scholar 

  33. Hou JG, Zhang B, Li ZW, Cao SY, Sun YQ, Wu YZ, Gao ZM, Sun LC. Vertically aligned oxygenated-CoS2-MoS2 heteronanosheet architecture from polyoxometalate for efficient and stable overall water splitting. Acs Catal. 2018;8(5):4621. https://doi.org/10.1021/acscatal.8b00668.

    Article  CAS  Google Scholar 

  34. Qin JY, Xi C, Zhang R, Liu T, Zou PC, Wu DY, Guo QJ, Mao J, Xin HL, Yang J. Activating edge-Mo of 2H-MoS2 via coordination with pyridinic N-C for pH-universal hydrogen evolution electrocatalysis. Acs Catal. 2021;11(8):4486. https://doi.org/10.1021/acscatal.0c04415.

    Article  CAS  Google Scholar 

  35. Ran NA, Song EH, Wang YW, Zhou Y, Liu JJ. Dynamic coordination transformation of active sites in single-atom MoS2 catalysts for boosted oxygen evolution catalysis. Energy Environ Sci. 2022;15(5):2071. https://doi.org/10.1039/D1EE02750F.

    Article  CAS  Google Scholar 

  36. Chen JN, Zhang HJ, Yu J, Guan DQ, She SX, Zhou W, Shao ZP. Self-catalyzed formation of strongly interconnected multiphase molybdenum-based composites for efficient hydrogen evolution. Carbon Energy. 2022;4(1):77. https://doi.org/10.1002/cey2.156.

    Article  CAS  Google Scholar 

  37. Singhania A, Bhaskarwar AN. Effect of rare earth (RE-La, Pr, Nd) metal-doped ceria nanoparticles on catalytic hydrogen iodide decomposition for hydrogen production. Int J Hydrog Energy. 2018;43(10):4818. https://doi.org/10.1016/j.ijhydene.2018.01.096.

    Article  CAS  Google Scholar 

  38. Yong H, Ji YW, Hu JF, Zhao DL, Wang S. Absorption and desorption hydrogen kinetic of Mg-Y-Ni based hydrogen storage alloy. Chin J Rare Met. 2022;46(8):1021. https://doi.org/10.13373/j.cnki.cjrm.XY22030006.

    Article  Google Scholar 

  39. Wang YX, Zhong SB, Sun FC. Research progress in vehicular high mass density solid hydrogen storage materials. Chin J Rare Met. 2022;46(6):796. https://doi.org/10.13373/j.cnki.cjrm.XY21120007.

    Article  Google Scholar 

  40. Du L, Zhang GX, Liu XH, Hassanpour A, Dubois M, Tavares AC, Sun SH. Biomass-derived nonprecious metal catalysts for oxygen reduction reaction: the demand-oriented engineering of active sites and structures. Carbon Energy. 2020;2(4):561. https://doi.org/10.1002/cey2.73.

    Article  CAS  Google Scholar 

  41. Zhao TW, Wang Y, Karuturi S, Catchpole K, Zhang Q, Zhao CA. Design and operando/in situ characterization of precious-metal-free electrocatalysts for alkaline water splitting. Carbon Energy. 2020;2(4):582. https://doi.org/10.1002/cey2.79.

    Article  CAS  Google Scholar 

  42. Sun JW, Xu WJ, Lv CX, Zhang LJ, Shakouri MS, Peng YH, Wang QQ, Yang XF, Yuan D, Huang MH, Hu YF, Yang DJ, Zhang LX. Co/MoN hetero-interface nanoflake array with enhanced water dissociation capability achieves the Pt-like hydrogen evolution catalytic performance. Appl Catal B. 2021;286:119882. https://doi.org/10.1016/j.apcatb.2021.119882.

    Article  CAS  Google Scholar 

  43. Zhou GY, Wu XM, Zhao MM, Pang H, Xu L, Yang J, Tang YW. Interfacial engineering-triggered bifunctionality of CoS2/MoS2 nanocubes/nanosheet arrays for high-efficiency overall water splitting. Chemsuschem. 2021;14(2):699. https://doi.org/10.1002/cssc.202002338.

    Article  CAS  PubMed  Google Scholar 

  44. Lin XP, Xue DY, Zhao LZ, Zong FY, Duan XC, Pan X, Zhang JM, Li QH. In-situ growth of 1T/2H-MoS2 on carbon fiber cloth and the modification of SnS2 nanoparticles: a three-dimensional heterostructure for high-performance flexible lithium-ion batteries. Chem Eng J. 2019;356:483. https://doi.org/10.1016/j.cej.2018.08.208.

    Article  CAS  Google Scholar 

  45. Zhang GW, Wang B, Bi JL, Fang DQ, Yang SC. Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. J Mater Chem A. 2019;7(10):5769. https://doi.org/10.1039/C9TA00530G.

    Article  CAS  Google Scholar 

  46. Linxing M, Liang L. Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Res Energy. 2022;1:e9120020. https://doi.org/10.26599/NRE.2022.9120020.

    Article  Google Scholar 

  47. Sun CY, Zhao ZW, Liu H, Wang HQ. Core–shell nanostructure for supra-photothermal CO2 catalysis. Rare Met. 2022;41(5):1403. https://doi.org/10.1007/s12598-021-01906-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science Foundation of Donghai Laboratory (No. DH-2022KF0314), the Open Fund of Hubei Longzhong Laboratory (No. 2022KF07), the National Natural Science Foundation of China (Nos. U2002213 and 21975001), the Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures (No. 2022GXYSOF10), the Support Program of Excellent Young Talents in Anhui Provincial Colleges and Universities (No. gxyqZD2022034) and the Double First Class University Plan (No. C176220100042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Zhi Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1340 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, NP., Zhang, L., Zhang, H. et al. Synergistic effect between Er-doped MoS2 nanosheets and interfacial Mo–N coupling phases for enhanced electrocatalytic hydrogen evolution. Rare Met. 43, 1301–1308 (2024). https://doi.org/10.1007/s12598-023-02409-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02409-7

Navigation