Skip to main content
Log in

Two-dimensional MoS2/diamond based heterojunctions for excellent optoelectronic devices: current situation and new perspectives

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) semiconductor molybdenum disulfide (MoS2) can be used as n-channel and is considered as a key candidate material to advance the promising development of optoelectronic device. The high thermal conductivity, breakdown voltage, carrier mobility, and high saturation velocity of diamond offer the possibility of making it high-frequency device material in high-temperature and high-power fields. The addition of 2D MoS2 nanolayers and nanosheets to diamond thin film to form heterojunction can improve the carrier transport performance of the optoelectronic device in harsh environments. In this perspective, the prospects of 2D MoS2/diamond heterojunction for challenges and new designs of optoelectronic applications are discussed, including photodetectors, memories, transistors, light emission diodes, and electron field emission devices to further explore the development of 2D material device field in complex environments.

Graphical abstract

摘要

二维 (2D) 半导体二硫化钼 (MoS2) 可以用作n沟道, 被认为是推进光电器件发展前景的关键候选材料。金刚石具有高的热导率、击穿电压、载流子迁移率和高饱和速度, 使其成为高温和高功率领域的高频器件材料。金刚石薄膜与2D MoS2纳米层或纳米片构成异质结可以改善光电器件在恶劣环境中的载流子传输性能。从这个角度, 我们讨论了2D二硫化钼/金刚石异质结在光电应用领域的挑战和新设计方面的前景, 包括光电探测器、存储器、晶体管、发光二极管和电子场发射器件, 以进一步探索复杂环境下2D材料器件领域的发展。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu H, Han XY, Dai X, Liu W, Wu J, Zhu JT, Kim DY, Zou GF, Sablon KA, Sergeev A, Guo ZX, Liu HY. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv Mater. 2018;30(13):1706561. https://doi.org/10.1002/adma.201706561.

    Article  CAS  Google Scholar 

  2. Zou LR, Sang DD, Yao Y, Wang XT, Zheng YY, Wang NZ, Wang C, Wang QL. Research progress of optoelectronic devices based on two-dimensional MoS2 materials. Rare Met. 2023;42(1):17. https://doi.org/10.1007/s12598-022-02113-y.

    Article  CAS  Google Scholar 

  3. Bhattacharya D, Mukherjee S, Mitra RK, Ray SK. Size-dependent optical properties of MoS2 nanoparticles and their photo-catalytic applications. Nanotechnology. 2020;31(14):145701. https://doi.org/10.1088/1361-6528/ab61ce.

    Article  CAS  Google Scholar 

  4. Yang FY, Chen SY, Feng HM, Wang C, Wang XF, Wang S, Zhou ZC, Li B, Ma LJ, Yang HG, Xie Y, Liu Q. High-performance optoelectronic memory based on bilayer MoS2 grown by Au catalyst. J Mater Chem C. 2020;8(8):2664. https://doi.org/10.1039/c9tc06996h.

    Article  CAS  Google Scholar 

  5. Barua S, Dutta HS, Gogoi S, Devi R, Khan R. Nanostructured MoS2-based advanced biosensors: a review. ACS Appl Nano Mater. 2017;1(1):2. https://doi.org/10.1021/acsanm.7b00157.

    Article  CAS  Google Scholar 

  6. Nalwa HS. A review of molybdenum disulfide (MoS2) based photodetectors: from ultra-broadband, self-powered to flexible devices. RSC Adv. 2020;10(51):30529. https://doi.org/10.1039/D0RA03183F.

    Article  CAS  Google Scholar 

  7. Yin WX, Bai X, Zhang XY, Zhang J, Gao XP, Yu WW. Multicolor light-emitting diodes with MoS2 quantum dots. Part Part Syst Charact. 2019;36(2):1800362. https://doi.org/10.1002/ppsc.201800362.

    Article  CAS  Google Scholar 

  8. Zhang Y, Zhuang YF, Liu LQ, Qiu PF, Su L, Teng XY, Fu GS, Yu W. The microstructure evolution during MoS2 films growth and its influence on the MoS2 optical-electrical properties in MoS2/p-Si heterojunction solar cells. Superlattices Microstruct. 2020;137:106352. https://doi.org/10.1016/j.spmi.2019.106352.

    Article  CAS  Google Scholar 

  9. Shi ZT, Zhao HB, Chen XQ, Wu GM, Wei F, Tu HL. Chemical vapor deposition growth and transport properties of MoS2–2H thin layers using molybdenum and sulfur as precursors. Rare Met. 2022;41(10):3574. https://doi.org/10.1007/s12598-015-0599-x.

    Article  CAS  Google Scholar 

  10. Netsu S, Kanazawa T, Uwanno T, Amemiya T, Nagashio K, Miyamoto Y. Type-II HfS2/MoS2 heterojunction transistors. IEICE Trans Inf Syst. 2018;101(5):338. https://doi.org/10.1587/transele.E101.C.338.

    Article  Google Scholar 

  11. Roy T, Tosun M, Cao X, Fang H, Lien DH, Zhao PD, Chen YZ, Chueh YL, Guo J, Javey A. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano. 2015;9(2):2071. https://doi.org/10.1021/nn507278b.

    Article  CAS  Google Scholar 

  12. Um DS, Lee Y, Lim S, Park S, Lee H, Ko H. High-performance MoS2/CuO nanosheet-on-one-dimensional heterojunction photodetectors. ACS Appl Mater Interfaces. 2016;8(49):33955. https://doi.org/10.1021/acsami.6b12574.

    Article  CAS  Google Scholar 

  13. Iqbal M, Saykar NG, Arya A, Banerjee I, Alegaonkar PS, Mahapatra SK. High-performance supercapacitor based on MoS2@ TiO2 composite for wide range temperature application. J Alloy Compd. 2021;2021:160705. https://doi.org/10.1016/j.jallcom.2021.160705.

    Article  CAS  Google Scholar 

  14. Patel M, Pataniya P, Vala H, Sumesh CK. One-dimensional/two-dimensional/three-dimensional dual heterostructure based on MoS2-modified ZnO-heterojunction diode with silicon. J Phys Chem C. 2019;123(36):21941. https://doi.org/10.1021/acs.jpcc.9b05134.

    Article  CAS  Google Scholar 

  15. Petit-Domínguez MD, Quintana C, Vázquez L, Del Pozo MD, Cuadrado I, Parra-Alfambra AM, Casero E. Synergistic effect of MoS2 and diamond nanoparticles in electrochemical sensors: determination of the anticonvulsant drug valproic acid. Microchim Acta. 2018;185(7):1. https://doi.org/10.1007/s00604-018-2793-7.

    Article  CAS  Google Scholar 

  16. Gong JH, Lin SX, Li W, Gao J. Difference in electronic structure between diamond and graphite. Appl Mech Mater. 2012;229:74. https://doi.org/10.4028/www.scientific.net/AMM.229-231.74.

    Article  CAS  Google Scholar 

  17. Galashev AY, Ivanichkina KA. Computer study of the structure and thermal stability of a monolayer MoS2 film on a diamond substrate. Lett Mater. 2019;9(3):270. https://doi.org/10.22226/2410-3535-2019-3-270-275.

    Article  Google Scholar 

  18. Zhou BB, Jerger PC, Lee KH, Fukami M, Mujid F, Park J, Awschalom DD. Spatiotemporal mapping of a photocurrent vortex in monolayer MoS2 using diamond quantum sensors. Phys Rev X. 2020;10(1):011003. https://doi.org/10.1103/PhysRevX.10.011003.

    Article  CAS  Google Scholar 

  19. Yang XW, Wang XP, Wang LJ. Effect of MoS2 film thickness on electroluminescence performance of diamond/boron/MoS2/diamond composite films. Diam Relat Mater. 2021;114:108331. https://doi.org/10.1016/j.diamond.2021.108331.

    Article  CAS  Google Scholar 

  20. Saravanan A, Huang BR, Chu JP, Prasannan A, Tsai HC. Interface engineering of ultrananocrystalline diamond/MoS2-ZnO heterostructures and its highly enhanced hydrogen gas sensing properties. Sens Actuators B. 2019;292:70. https://doi.org/10.1016/j.snb.2019.04.108.

    Article  CAS  Google Scholar 

  21. Baek DH, Kim J. MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens Actuators B. 2017;250:686. https://doi.org/10.1016/j.snb.2017.05.028.

    Article  CAS  Google Scholar 

  22. Wei YF, Tran VT, Zhao CY, Liu HF, Kong JH, Du HJ. Robust photodetectable paper from chemically exfoliated MoS2–MoO3 multilayers. ACS Appl Mater Interfaces. 2019;11(24):21445. https://doi.org/10.1021/acsami.9b01515.

    Article  CAS  Google Scholar 

  23. Majee BP, Mishra S, Pandey RK, Prakash R, Mishra AK. Multifunctional few-layer MoS2 for photodetection and surface-enhanced Raman spectroscopy application with ultrasensitive and repeatable detectability. J Phys Chem C. 2019;123(29):18071. https://doi.org/10.1021/acs.jpcc.9b04279.

    Article  CAS  Google Scholar 

  24. Yao Y, Sang DD, Duan SS, Wang QL, Liu CL. Excellent optoelectronic applications and electrical transport behavior of the n-WO3 nanostructures/p-diamond heterojunction: a new perspective. Nanotechnology. 2021;32(33):332501. https://doi.org/10.1088/1361-6528/abfe24.

    Article  CAS  Google Scholar 

  25. Lou YY, Wang LJ, Zhang ML, Gu BB, Su QF, Xia YB. CVD diamond detector for ultraviolet radiation. Funct Mater. 2004;35:442.

    Google Scholar 

  26. Lin X, Wang F, Shan X, Miao YP, Chen XD, Yan M, Zhang LF, Liu K, Luo J, Zhang KL. High-performance photodetector and its optoelectronic mechanism of MoS2/WS2 vertical heterostructure. Appl Surf Sci. 2021;546:149074. https://doi.org/10.1016/j.apsusc.2021.149074.

    Article  CAS  Google Scholar 

  27. Shi JW, Zhu JR, Wu XX, Zheng BY, Chen J, Sui XY, Zhang S, Shi J, Du WN, Zhong YG, Wang Q, Zhang Q, Pan AL, Liu XF. Enhanced trion emission and carrier dynamics in monolayer WS2 coupled with plasmonic nanocavity. Adv Opt Mater. 2020;8(23):2001147. https://doi.org/10.1002/adom.202001147.

    Article  CAS  Google Scholar 

  28. Li YZ, Wu XX, Liu WZ, Xu HY, Liu XF. Revealing the interrelation between C-and A-exciton dynamics in monolayer WS2 via transient absorption spectroscopy. Appl Phys Lett. 2021;119(5):051106. https://doi.org/10.1063/5.0060587.

    Article  CAS  Google Scholar 

  29. Zhou X, Zhou N, Li C, Song HY, Zhang Q, Hu XZ, Gan L, Li HQ, Lu JT, Luo J, Xiong J, Zhai TY. Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors. 2D Mater. 2017;4(2):025048. https://doi.org/10.1088/2053-1583/aa6422.

    Article  CAS  Google Scholar 

  30. Liu ZC, Li FN, Li SY, Hu C, Wang W, Wang F, Lin F, Wang HX. Fabrication of UV photodetector on TiO2/diamond film. Sci Rep. 2015;5(1):1. https://doi.org/10.1038/srep14420.

    Article  CAS  Google Scholar 

  31. Liu XX, Li F, Xu MX, Shen T, Yang ZL, Fan WL, Qi JJ. High response, self-powered photodetector based on the monolayer MoS2/P–Si heterojunction with asymmetric electrodes. Langmuir. 2018;34(47):14151. https://doi.org/10.1021/acs.langmuir.8b02171.

    Article  CAS  Google Scholar 

  32. Yang GF, Gu Y, Yan PF, Wang J, Xue JJ, Zhang XM, Lu NY, Chen GQ. Chemical vapor deposition growth of vertical MoS2 nanosheets on p-GaN nanorods for photodetector application. ACS Appl Mater Interfaces. 2019;11(8):8453. https://doi.org/10.1021/acsami.8b22344.

    Article  CAS  Google Scholar 

  33. Yu Y, Wu LZ, Zhi JF. Diamond nanowires: fabrication, structure, properties, and applications. Angew Chem Int Ed. 2014;53(52):14326. https://doi.org/10.1002/anie.201310803.

    Article  CAS  Google Scholar 

  34. Mao CH, Dubey A, Lee FJ, Chen CY, Tang SY, Ranjan A, Yen TJ. An ultrasensitive gateless photodetector based on the 2D bilayer MoS2–1D Si nanowire–0D Ag nanoparticle hybrid structure. ACS Appl Mater Interfaces. 2021;13(3):4126. https://doi.org/10.1021/acsami.0c15819.

    Article  CAS  Google Scholar 

  35. Chen YC, Lu YJ, Lin CN, Tian YZ, Gao CJ, Dong L, Shan CX. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J Mater Chem C. 2018;6(21):5727. https://doi.org/10.1039/C8TC01122B.

    Article  CAS  Google Scholar 

  36. Paul T, Mukundan AA, Tiwari KK, Ghosh A, Thakur CS. Demonstration of intrinsic STDP learning capability in all-2D multi-state MoS2 memory and its application in modelling neuromorphic speech recognition. 2D Mater. 2021;8(4):045031. https://doi.org/10.1088/2053-1583/ac210a.

    Article  CAS  Google Scholar 

  37. Ge RJ, Wu XH, Kim M, Shi JP, Sonde S, Li T, Zhang YF, Lee JC, Akinwande D. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 2018;18(1):434. https://doi.org/10.1021/acs.nanolett.7b04342.

    Article  CAS  Google Scholar 

  38. Wu XH, Ge RJ, Akinwande D, Lee JC. Understanding of multiple resistance states by current sweeping in MoS2-based non-volatile memory devices. Nanotechnology. 2020;31(46):465206. https://doi.org/10.1088/1361-6528/aba46a.

    Article  CAS  Google Scholar 

  39. Yin ZY, Li H, Li H, Jiang L, Shi YM, Sun YH, Lu G, Zhang Q, Chen XD, Zhang H. Single-layer MoS2 phototransistors. ACS Nano. 2012;6(1):74. https://doi.org/10.1021/nn2024557.

    Article  Google Scholar 

  40. Shi YM, Huang JK, Jin LM, Hsu YT, Yu SF, Li LJ, Yang HY. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci Rep. 2013;3(1):1. https://doi.org/10.1038/srep01839.

    Article  CAS  Google Scholar 

  41. Singh AK, Pandey RK, Prakash R, Eom J. Tailoring the charge carrier in few layers MoS2 field-effect transistors by Au metal adsorbate. Appl Surf Sci. 2018;437:70. https://doi.org/10.1016/j.apsusc.2017.12.143.

    Article  CAS  Google Scholar 

  42. Yao Y, Sang DD, Duan SS, Wang QL, Liu CL. Review on the properties of boron-doped diamond and one-dimensional-metal-oxide based P-N heterojunction. Molecules. 2021;26(1):71. https://doi.org/10.3390/molecules26010071.

    Article  CAS  Google Scholar 

  43. Toghill KE, Comptona RG. Metal nanoparticle modified boron doped diamond electrodes for use in electroanalysis. Electroanalysis. 2010;22(17–18):1947. https://doi.org/10.1002/elan.201000072.

    Article  CAS  Google Scholar 

  44. Lin JD, Li H, Zhang H, Chen W. Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Appl Phys Lett. 2013;102(20):203109. https://doi.org/10.1063/1.4807658.

    Article  CAS  Google Scholar 

  45. Li P, Yuan K, Lin DY, Xu XL, Wang YL, Wan Y, Yu HR, Zhang K, Ye Y, Dai L. A mixed-dimensional light-emitting diode based on a p-MoS2 nanosheet and an n-CdSe nanowire. Nanoscale. 2017;9(46):18175. https://doi.org/10.1039/C7NR05706G.

    Article  CAS  Google Scholar 

  46. Nelz R, Radtke M, Slablab A, Xu ZQ, Kianinia M, Li C, Bradac C, Aharonovich L, Neu E. Near-field energy transfer between a luminescent 2D material and color centers in diamond. Adv Quantum Technol. 2019;3(2):1900088. https://doi.org/10.1002/qute.201900088.

    Article  CAS  Google Scholar 

  47. Pelella A, Grillo A, Urban F, Giubileo F, Passacantando M, Pollmann E, Schleberger M, Bartolomeo AD. Gate-controlled field emission current from MoS2 nanosheets. Adv Electron Mater. 2021;7(2):2000838. https://doi.org/10.1002/aelm.202000838.

    Article  CAS  Google Scholar 

  48. Chen WE, Chen CK, Yeh CJ, Hu XJ, Leou KC, Lin IN, Lin CR. Evolution of granular structure and the enhancement of electron field emission properties of nanocrystalline and ultrananocrystalline diamond films due to plasma treatment process. ACS Appl Mater Interfaces. 2018;10(34):28726. https://doi.org/10.1021/acsami.8b02799.

    Article  CAS  Google Scholar 

  49. Chakraborty T, Lehmann F, Zhang J, Borgsdorf S, Wöhrl N, Remfort R, Buck V, Köhler U, Suter D. CVD growth of ultrapure diamond, generation of NV centers by ion implantation, and their spectroscopic characterization for quantum technological applications. Phys Rev Mater. 2019;3(6):065205. https://doi.org/10.1103/PhysRevMaterials.3.065205.

    Article  CAS  Google Scholar 

  50. Zheng WT, Bian K, Chen XK, Shen Y, Zhang SC, Stöhr R, Denisenko A, Wrachtrup J, Yang S, Jiang Y. Coherence enhancement of solid-state qubits by local manipulation of the electron spin bath. Nat Phys. 2022;18:1317. https://doi.org/10.1038/s41567-022-01719-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62104090, 11604133 and 62205011), the Natural Science Foundation of Shandong Province (No. ZR2017QA013), the Science and Technology Plan of Youth Innovation Team for Universities of Shandong Province (No. 2019KJJ019), the Open Project of State Key Laboratory of Superhard Materials, Jilin University (Nos. 201503 and 201612), the Fundamental Research Funds for the Central Universities (No. buctrc 202122), the Research Funding of Liaocheng University (Nos. 318012016, 318051610, 318052136 and 318051612), the Open Research Project of Zhejiang province Key Laboratory of Quantum Technology and Device (No. 20220401), the Open Research Project of Special Display and Imaging Technology Innovation Center of Anhui Province (No. 2022AJ05001) and the Special Construction Project Fund for Shandong Province Taishan Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan-Dan Sang, Hong-Zhu Xi, Cong Wang or Qing-Lin Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, LR., Lyu, XD., Sang, DD. et al. Two-dimensional MoS2/diamond based heterojunctions for excellent optoelectronic devices: current situation and new perspectives. Rare Met. 42, 3201–3211 (2023). https://doi.org/10.1007/s12598-023-02381-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02381-2

Keywords

Navigation