Skip to main content
Log in

Insight into microstructure evolution on anti-corrosion property of AlxCoCrFeNiC0.01 high-entropy alloys using scanning vibration electrode technique

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of microstructure on the corrosion resistance of AlxCoCrFeNiC0.01 (x = 0.2, 0.7, and 1.2) high-entropy alloys (HEAs) was systematically studied in this work. The microstructure evolution by regulating the Al content was analyzed in detail. Corrosion behavior was in situ monitored using the scanning vibration electrode technique, as well as some traditional electrochemical measurements. It is interesting to find that the compositions of body-centered cubic (bcc) and face-centered cubic (fcc) phases changed with the rising Al content, while the corresponding electrochemical responses for both phases were discriminated using the scanning Kelvin probe force microscopy method. Cr element was mainly distributed in the bcc phase for Al0.2 (x = 0.2) alloy, while its distribution changed to the fcc phase for the Al0.7 and Al1.2 alloys. The micro-galvanic corrosion cells formed between Cr-depleted and Cr-rich phases, resulting in the localized corrosion behaviors for the AlxCoCrFeNiC0.01 HEAs, and the order for anti-corrosion property was Al0.2 > Al1.2 > Al0.7 HEAs.

Graphical abstract

摘要

本工作系统地研究了微观结构变化对AlxCoCrFeNiC0.01 (x=0.2, 0.7和1.2) 高熵合金(HEAs)耐蚀性能的影响。通过改变Al元素添加量来调控合金微观结构,采用扫描振动电极技术结合传统电化学测量方法对合金腐蚀行为进行了原位监测。结果表明:合金中的bcc和fcc相的组成随着Al元素含量的增加而发生改变,使用扫描开尔文探针分析两相的电化学响应。对于Al0.2合金,Cr元素主要分布在bcc相,而对于Al0.7和Al1.2合金,其分布改变为fcc相。贫铬区和富铬区之间形成微电偶腐蚀原电池,AlxCoCrFeNiC0.01 HEAs表现为局部腐蚀特征,耐蚀性能顺序为Al0.2>Al1.2>Al0.7 HEAs。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448. https://doi.org/10.1016/j.actamat.2016.08.081.

    Article  CAS  Google Scholar 

  2. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299. https://doi.org/10.1002/adem.200300567.

    Article  CAS  Google Scholar 

  3. Cantor B, Chang I, Knight P, Vincent A. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213. https://doi.org/10.1016/j.msea.2003.10.257.

    Article  CAS  Google Scholar 

  4. Du X, Li W, Chang H, Yang T, Duan G, Wu B, Huang J, Chen F, Liu C, Chuang W. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co–Cr–Ni medium-entropy alloy. Nat Commun. 2020;11(1):2390. https://doi.org/10.1038/s41467-020-16085-z.

    Article  CAS  Google Scholar 

  5. Youssef KM, Zaddach AJ, Niu C, Irving DL, Koch CC. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett. 2015;3(2):95. https://doi.org/10.1080/21663831.2014.985855.

    Article  CAS  Google Scholar 

  6. Deng H, Xie Z, Wang M, Chen Y, Liu R, Yang J, Zhang T, Wang X, Fang Q, Liu C. A nanocrystalline AlCoCuNi medium-entropy alloy with high thermal stability via entropy and boundary engineering. Mater Sci Eng A. 2020;774:138925. https://doi.org/10.1016/j.msea.2020.138925.

    Article  CAS  Google Scholar 

  7. Sathiyamoorthi P, Basu J, Kashyap S, Pradeep K, Kottada R. Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Mater Design. 2017;134:426. https://doi.org/10.1016/j.matdes.2017.08.053.

    Article  CAS  Google Scholar 

  8. Yan X, Guo H, Yang W, Pang S, Wang Q, Liu Y, Liaw PK, Zhang T. Al0.3CrxFeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties. J Alloys Compd. 2021;860:158436. https://doi.org/10.1016/j.jallcom.2020.158436.

    Article  CAS  Google Scholar 

  9. Yang J, Shi K, Zhang W, Chen Q, Ning Z, Zhu C, Liao J, Yang Y, Liu N, Yang J. A novel AlCrFeMoTi high-entropy alloy coating with a high corrosion-resistance in lead-bismuth eutectic alloy. Corros Sci. 2021;187:109524. https://doi.org/10.1016/j.corsci.2021.109524.

    Article  CAS  Google Scholar 

  10. Chuang MH, Tsai MH, Wang WR, Lin SJ, Yeh J. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011;59(16):6308. https://doi.org/10.1016/j.actamat.2011.06.041.

    Article  CAS  Google Scholar 

  11. Zhang T, Deng H, Xie Z, Liu R, Yang J, Liu C, Wang X, Fang Q, Xiong Y. Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces. J Mater Sci Technol. 2020;52:29. https://doi.org/10.1016/j.jmst.2020.02.046.

    Article  Google Scholar 

  12. Chou H, Chang Y, Chen S, Yeh J. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Mater Sci Eng B. 2009;163(3):184. https://doi.org/10.1016/j.mseb.2009.05.024.

    Article  CAS  Google Scholar 

  13. Kao YF, Chen TJ, Chen SK, Yeh J. Microstructure and mechanical property of as-cast, -homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. J Alloys Compd. 2011;509(5):1607. https://doi.org/10.1016/j.jallcom.2010.10.210.

    Article  CAS  Google Scholar 

  14. Wang WR, Wang WL, Yeh J. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd. 2014;589:143. https://doi.org/10.1016/j.jallcom.2013.11.084.

    Article  CAS  Google Scholar 

  15. Kao Y, Lee T, Chen S, Chang Y. Electrochemical passive properties of AlxCoCrFeNi (x= 0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros Sci. 2010;52(3):1026. https://doi.org/10.1016/j.corsci.2009.11.028.

    Article  CAS  Google Scholar 

  16. Joseph J, Stanford N, Hodgson P, Fabijanic D. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys. J Alloys Compd. 2017;726:885. https://doi.org/10.1016/j.jallcom.2017.08.067.

    Article  CAS  Google Scholar 

  17. Zhao L, Jiang L, Yang L, Wang H, Zhang W, Ji G, Zhou X, Curtin W, Chen X, Liaw P, Chen S, Wang H. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys. J Mater Sci Technol. 2022;110:269. https://doi.org/10.1016/j.jmst.2021.09.031.

    Article  CAS  Google Scholar 

  18. Chen D, He F, Han B, Wu Q, Tong Y, Zhao Y, Wang Z, Wang J, Kai J. Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys. Intermetallics. 2019;110:106476. https://doi.org/10.1016/j.intermet.2019.106476.

    Article  CAS  Google Scholar 

  19. Luo H, Zou S, Chen Y, Li Z, Du C, Li X. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution. Corros Sci. 2020;163:108287. https://doi.org/10.1016/j.corsci.2019.108287.

    Article  CAS  Google Scholar 

  20. Wong S, Shun T, Chang C, Lee C. Microstructures and properties of Al0.3CoCrFeNiMnx high-entropy alloys. Mater Chem Phys. 2018;210:146. https://doi.org/10.1016/j.matchemphys.2017.07.085.

    Article  CAS  Google Scholar 

  21. Zhang SY, Gao YY, Zhang ZB, Gu T, Liang XB, Wang LZ. Research progress on functional properties of novel high-entropy metallic glasses. Chin J Rare Met. 2021;45(6):717. https://doi.org/10.13373/j.cnki.cjrm.XY20080032.

    Article  Google Scholar 

  22. Niu Z, Xu J, Wang T, Wang N, Han Z, Wang Y. Microstructure, mechanical properties and corrosion resistance of CoCrFeNiWx (x = 0, 02, 05) high entropy alloys. Intermetallics. 2019;112:106550. https://doi.org/10.1016/j.intermet.2019.106550.

    Article  CAS  Google Scholar 

  23. Lee CP, Chen YY, Hsu CY, Yeh JW, Shih HC. Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid. Thin Solid Films. 2008;517(3):1301. https://doi.org/10.1016/j.tsf.2008.06.014.

    Article  CAS  Google Scholar 

  24. Fu Y, Li J, Luo H, Du C, Li X. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. J Mater Sci Technol. 2021;80:217. https://doi.org/10.1016/j.jmst.2020.11.044.

    Article  CAS  Google Scholar 

  25. Shi Y, Collins L, Feng R, Zhang C, Balke N, Liaw P, Yang B. Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corros Sci. 2018;133:120. https://doi.org/10.1016/j.corsci.2018.01.030.

    Article  CAS  Google Scholar 

  26. Xian X, Zhong Z, Lin L, Zhu Z, Chen C, Wu Y. Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al. Rare Met. 2022;41(3):1015. https://doi.org/10.1007/s12598-018-1161-4.

    Article  CAS  Google Scholar 

  27. Lu SY, Miao JW, Lu YP. Strengthening and toughening of multi-principal high-entropy alloys. Chin J Rare Met. 2021;45(5):530. https://doi.org/10.13373/j.cnki.cjrm.XY20080042.

    Article  Google Scholar 

  28. Wang W, Wang W, Wang S, Tsai Y, Lai C, Yeh J. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 2012;26:44. https://doi.org/10.1016/j.intermet.2012.03.005.

    Article  CAS  Google Scholar 

  29. Gangireddy S, Gwalani B, Soni V, Banerjee R, Mishra R. Contrasting mechanical behavior in precipitation hardenable AlxCoCrFeNi high entropy alloy microstructures: single phase FCC vs. dual phase FCC-BCC. Mater Sci Eng A. 2019;739:158. https://doi.org/10.1016/j.msea.2018.10.021.

    Article  CAS  Google Scholar 

  30. Wan S, Wei H, Quan R, Luo Z, Wang H, Liao B, Guo X. Soybean extract firstly used as a green corrosion inhibitor with high efficacy and yield for carbon steel in acidic medium. Ind Crop Prod. 2022;187:115354. https://doi.org/10.1016/j.indcrop.2022.115354.

    Article  CAS  Google Scholar 

  31. Wan S, Wang H, Liu J, Liao B, Guo X. Self-assembled monolayers for electrochemical migration protection of low-temperature sintered nano-Ag paste. Rare Met. 2022;41(4):1239. https://doi.org/10.1007/s12598-021-01866-2.

    Article  CAS  Google Scholar 

  32. Zhu BH, Qiu HC, Jiang W, Yu QH. Oxidation behavior of Al0.2CoCrFeNi high-entropy alloy film in supercritical water environment. Rare Met. 2022;41(4):1217. https://doi.org/10.1007/s12598-021-01859-1.

    Article  CAS  Google Scholar 

  33. Xie XF, Xie ZM, Liu R, Fang QF, Liu CS, Han WZ, Wu X. Hierarchical microstructures enabled excellent low-temperature strength-ductility synergy in bulk pure tungsten. Acta Mater. 2022;228:117. https://doi.org/10.1016/j.actamat.2022.117765.

    Article  CAS  Google Scholar 

  34. Hasannaeimi V, Mukherjee S. Galvanic corrosion in a eutectic high entropy alloy. Electroanal Chem. 2019;848:113331. https://doi.org/10.1016/j.jelechem.2019.113331.

    Article  CAS  Google Scholar 

  35. Bastos A, Ferreira M, Simões A. Corrosion inhibition by chromate and phosphate extracts for iron substrates studied by EIS and SVET. Corros Sci. 2006;48(6):1500. https://doi.org/10.1016/j.corsci.2005.05.021.

    Article  CAS  Google Scholar 

  36. Liao B, Luo Z, Wan S, Chen L. Insight into the anti-corrosion performance of Acanthopanax senticosus leaf extract as eco-friendly corrosion inhibitor for carbon steel in acidic medium. J Ind Eng Chem. 2023;117:238. https://doi.org/10.1016/j.jiec.2022.10.010.

    Article  CAS  Google Scholar 

  37. Moreto J, Marino C, Bose FW, Rocha L, Fernandes J. SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al–Li alloys used in aircraft fabrication. Corros Sci. 2014;84:30. https://doi.org/10.1016/j.corsci.2014.03.001.

    Article  CAS  Google Scholar 

  38. Wang W, Wang J, Sun Z, Li J, Li L, Song X, Wen X, Xie L, Yang X. Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys. J Alloys Compd. 2020;812:152139. https://doi.org/10.1016/j.jallcom.2019.152139.

    Article  CAS  Google Scholar 

  39. Lin C, Tsai H, Bor H. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy. Intermetallics. 2010;18(6):1244. https://doi.org/10.1016/j.intermet.2010.03.030.

    Article  CAS  Google Scholar 

  40. Shi Y, Collins L, Balke N, Liaw PK, Yang B. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution. Appl Surf Sci. 2018;439:533. https://doi.org/10.1016/j.apsusc.2018.01.047.

    Article  CAS  Google Scholar 

  41. Joseph J, Jarvis T, Wu X, Stanford N, Hodgson P, Fabijanic DM. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater Sci Eng B. 2015;633:184. https://doi.org/10.1016/j.msea.2015.02.072.

    Article  CAS  Google Scholar 

  42. Hecht U, Gein S, Stryzhyboroda O, Eshed E, Osovski S. The BCC–FCC phase transformation pathways and crystal orientation relationships in dual phase materials from Al–(Co)–Cr–Fe–Ni alloys. Front Mater. 2020. https://doi.org/10.3389/fmats.2020.00287.

    Article  Google Scholar 

  43. Nolze G. Improved determination of fcc/bcc orientation relationships by use of high-indexed pole figures. Cryst Res Technol. 2006;41(1):72. https://doi.org/10.1002/crat.200410533.

    Article  CAS  Google Scholar 

  44. Huang L, Sun Y, Amar A, Wu C, Liu X, Le G, Wang X, Wu J, Li K, Jiang C. Microstructure evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys by laser melting deposition. Vacuun. 2021;183(24):109. https://doi.org/10.1016/j.vacuum.2020.109875.

    Article  CAS  Google Scholar 

  45. Chao Q, Guo T, Jarvis T, Wu X, Hodgson P, Fabijanic DJ. Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel. Surf Coat Tech. 2017;332:440. https://doi.org/10.1016/j.surfcoat.2017.09.072.

    Article  CAS  Google Scholar 

  46. Zhou X, Li K, Zhang D, Liu X, Ma J, Liu W, Shen Z. Textures formed in a CoCrMo alloy by selective laser melting. J Alloys Compd. 2015;631:153. https://doi.org/10.1016/j.jallcom.2015.01.096.

    Article  CAS  Google Scholar 

  47. Rao J, Diao H, Ocelík V, Vainchtein D, Zhang C, Kuo C, Tang Z, Guo W, Poplawsky J, Zhou Y. Secondary phases in AlxCoCrFeNi high-entropy alloys: an in-situ TEM heating study and thermodynamic appraisal. Acta Mater. 2017;131:206. https://doi.org/10.1016/j.actamat.2017.03.066.

    Article  CAS  Google Scholar 

  48. Wan S, Chen H, Liao B, Guo X. Adsorption and anticorrosion mechanism of glucose-based functionalized carbon dots for copper in neutral solution. J Taiwan Inst Chem E. 2021;129:289. https://doi.org/10.1016/j.jtice.2021.10.001.

    Article  CAS  Google Scholar 

  49. Zeng Y, Kang L, Wu Y, Wan S, Liao B, Li N, Guo X. Melamine modified carbon dots as high effective corrosion inhibitor for Q235 carbon steel in neutral 3.5 wt% NaCl solution. J Mol Liq. 2022;349:118108. https://doi.org/10.1016/j.molliq.2021.118108.

    Article  CAS  Google Scholar 

  50. Wan S, Zhang T, Chen H, Liao B, Guo X. Kapok leaves extract and synergistic iodide as novel effective corrosion inhibitors for Q235 carbon steel in H2SO4 medium. Ind Crop Prod. 2022;178:114649. https://doi.org/10.1016/j.indcrop.2022.114649.

    Article  CAS  Google Scholar 

  51. Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2011;132(2–3):233. https://doi.org/10.1016/j.matchemphys.2011.11.021.

    Article  CAS  Google Scholar 

  52. Guo S, Ng C, Lu J, Liu C. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505. https://doi.org/10.1063/1.3587228.

    Article  CAS  Google Scholar 

  53. He J, Liu W, Wang H, Wu Y, Liu X, Nieh T, Lu Z. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014;62:105. https://doi.org/10.1016/j.actamat.2013.09.037.

    Article  CAS  Google Scholar 

  54. Shi Y, Yang B, Xie X, Brechtl J, Dahmen KA, Liaw PK. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros Sci. 2017;119:33. https://doi.org/10.1016/j.corsci.2017.02.019.

    Article  CAS  Google Scholar 

  55. Schmutz P, Frankel GS. Characterization of AA2024-T3 by scanning Kelvin probe force microscopy. J Electrochem Soc. 1998;145(7):2285. https://doi.org/10.1149/1.1838633.

    Article  CAS  Google Scholar 

  56. Andrade C, Maribona IR, Feliu S, González JA, Feliu S. The effect of macrocells between active and passive areas of steel reinforcements. Corros Sci. 1992;33(2):237. https://doi.org/10.1016/0010-938X(92)90148-V.

    Article  CAS  Google Scholar 

  57. Yin L, Ying J, Leygraf C, Pan J. Numerical simulation of micro-galvanic corrosion in Al alloys: effect of geometric factors. J Electrochem Soc. 2017;164(13):C75. https://doi.org/10.1149/2.1221702jes.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51971067 and 52001080), the Platform Research Capability Enhancement Project of Guangzhou University (No. 69-620939), and R&D Program of Joint Institute of GZHU & ICoST (Nos. GI202107 and GI202109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-Wei Deng or Tao Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, BK., Liang, ZX., Luo, ZG. et al. Insight into microstructure evolution on anti-corrosion property of AlxCoCrFeNiC0.01 high-entropy alloys using scanning vibration electrode technique. Rare Met. 42, 3455–3467 (2023). https://doi.org/10.1007/s12598-023-02322-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02322-z

Keywords

Navigation